enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Combination - Wikipedia

    en.wikipedia.org/wiki/Combination

    The number of such strings is the number of ways to place 10 stars in 13 positions, () = =, which is the number of 10-multisubsets of a set with 4 elements. Bijection between 3-subsets of a 7-set (left) and 3-multisets with elements from a 5-set (right).

  3. Combinatorial number system - Wikipedia

    en.wikipedia.org/wiki/Combinatorial_number_system

    Suppose one wants to determine the 5-combination at position 72. The successive values of () for n = 4, 5, 6, ... are 0, 1, 6, 21, 56, 126, 252, ..., of which the largest one not exceeding 72 is 56, for n = 8. Therefore c 5 = 8, and the remaining elements form the 4-combination at position 72 − 56 = 16.

  4. Combinations and permutations - Wikipedia

    en.wikipedia.org/wiki/Combinations_and_permutations

    Combinations and permutations in the mathematical sense are described in several articles. Described together, in-depth: Twelvefold way; Explained separately in a more accessible way: Combination; Permutation; For meanings outside of mathematics, please see both words’ disambiguation pages: Combination (disambiguation) Permutation ...

  5. Composition (combinatorics) - Wikipedia

    en.wikipedia.org/wiki/Composition_(combinatorics)

    4 + 1; 3 + 2. Note that the ancient Sanskrit sages discovered many years before Fibonacci that the number of compositions of any natural number n as the sum of 1's and 2's is the nth Fibonacci number! Note that these are not general compositions as defined above because the numbers are restricted to 1's and 2's only. 1=1 (1) 2=1+1=2 (2)

  6. Twelvefold way - Wikipedia

    en.wikipedia.org/wiki/Twelvefold_way

    A second distinction among sampling schemes is whether ordering matters. For example, if we have ten items, of which we choose two, then the choice (4, 7) is different from (7, 4) if ordering matters; on the other hand, if ordering does not matter, then the choices (4, 7) and (7, 4) are equivalent.

  7. Coin problem - Wikipedia

    en.wikipedia.org/wiki/Coin_problem

    The following scores (in addition to 1, 2, and 4) cannot be made from multiples of 5 and 7 and so are almost never seen in sevens: 3, 6, 8, 9, 11, 13, 16, 18 and 23. By way of example, none of these scores was recorded in any game in the 2014-15 Sevens World Series .

  8. Combinatorial explosion - Wikipedia

    en.wikipedia.org/wiki/Combinatorial_explosion

    Then 1! = 1, 2! = 2, 3! = 6, and 4! = 24. However, we quickly get to extremely large numbers, even for relatively small n . For example, 100! ≈ 9.332 621 54 × 10 157 , a number so large that it cannot be displayed on most calculators, and vastly larger than the estimated number of fundamental particles in the observable universe.

  9. Combinatorial design - Wikipedia

    en.wikipedia.org/wiki/Combinatorial_design

    Combinatorial designs date to antiquity, with the Lo Shu Square being an early magic square.One of the earliest datable application of combinatorial design is found in India in the book Brhat Samhita by Varahamihira, written around 587 AD, for the purpose of making perfumes using 4 substances selected from 16 different substances using a magic square.