Search results
Results from the WOW.Com Content Network
csv NLP CNAE-9 Dataset Categorization task for free text descriptions of Brazilian companies. Word frequency has been extracted. 1080 Text Classification 2012 [98] [99] P. Ciarelli et al. Sentiment Labeled Sentences Dataset 3000 sentiment labeled sentences. Sentiment of each sentence has been hand labeled as positive or negative. 3000 Text
RAWPED is a dataset for detection of pedestrians in the context of railways. The dataset is labeled box-wise. 26000 Images Object recognition and classification 2020 [70] [71] Tugce Toprak, Burak Belenlioglu, Burak Aydın, Cuneyt Guzelis, M. Alper Selver OSDaR23 OSDaR23 is a multi-sensory dataset for detection of objects in the context of railways.
A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]
seed is a type of reference table used in dbt for static or infrequently changed data, like for example country codes or lookup tables), which are CSV based and typically stored in a seeds folder. References
Comma-separated values (CSV) is a text file format that uses commas to separate values, and newlines to separate records. A CSV file stores tabular data (numbers and text) in plain text, where each line of the file typically represents one data record. Each record consists of the same number of fields, and these are separated by commas in the ...
Create lists function helps create bulleted lists from CSV data. For example, if you have a list of cities in a column ,Chennai^Mumbai^Kolkata. CSVLoader will find that the second column has ^ character and split the column into a bulleted list like this: Chennai; Mumbai; Kolkata
The four datasets composing Anscombe's quartet. All four sets have identical statistical parameters, but the graphs show them to be considerably different. Anscombe's quartet comprises four datasets that have nearly identical simple descriptive statistics, yet have very different distributions and appear very different when graphed.
The iris data set is widely used as a beginner's dataset for machine learning purposes. The dataset is included in R base and Python in the machine learning library scikit-learn, so that users can access it without having to find a source for it. Several versions of the dataset have been published. [8]