Search results
Results from the WOW.Com Content Network
The Euler tour technique (ETT), named after Leonhard Euler, is a method in graph theory for representing trees. The tree is viewed as a directed graph that contains two directed edges for each edge in the tree. The tree can then be represented as a Eulerian circuit of the directed graph, known as the Euler tour representation (ETR) of the tree
[2] [4] This solution is based on the Euler tour technique for processing trees. The main observation is that LA(v,d) is the first node of depth d that appears in the Euler tour after the last appearance of v. Thus, by constructing the Euler tour and associated information on depth, the problem is reduced to a query on arrays, named find ...
An Eulerian trail, [note 1] or Euler walk, in an undirected graph is a walk that uses each edge exactly once. If such a walk exists, the graph is called traversable or semi-eulerian. [3] An Eulerian cycle, [note 1] also called an Eulerian circuit or Euler tour, in an undirected graph is a cycle that uses each edge exactly once
For planar graphs, the properties of being Eulerian and bipartite are dual: a planar graph is Eulerian if and only if its dual graph is bipartite. As Welsh showed, this duality extends to binary matroids: a binary matroid is Eulerian if and only if its dual matroid is a bipartite matroid, a matroid in which every circuit has even cardinality.
Leonhard Euler is credited with introducing both specifications in two publications written in 1755 [3] and 1759. [4] [5] Joseph-Louis Lagrange studied the equations of motion in connection to the principle of least action in 1760, later in a treaty of fluid mechanics in 1781, [6] and thirdly in his book Mécanique analytique. [5]
Doubling the edges of a T-join causes the given graph to become an Eulerian multigraph (a connected graph in which every vertex has even degree), from which it follows that it has an Euler tour, a tour that visits each edge of the multigraph exactly once. This tour will be an optimal solution to the route inspection problem. [7] [2]
Map of Königsberg in Euler's time showing the actual layout of the seven bridges, highlighting the river Pregel and the bridges. The Seven Bridges of Königsberg is a historically notable problem in mathematics. Its negative resolution by Leonhard Euler, in 1736, [1] laid the foundations of graph theory and prefigured the idea of topology. [2]
An Euler diagram (/ ˈ ɔɪ l ər /, OY-lər) is a diagrammatic means of representing sets and their relationships. They are particularly useful for explaining complex hierarchies and overlapping definitions. They are similar to another set diagramming technique, Venn diagrams. Unlike Venn diagrams, which show all possible relations between ...