Search results
Results from the WOW.Com Content Network
In chemistry, an enantiomer (/ɪˈnænti.əmər, ɛ-, -oʊ-/ [1] ih-NAN-tee-ə-mər), also known as an optical isomer, [2] antipode, [3] or optical antipode, [4] is one of a pair of molecular entities which are mirror images of each other and non-superposable. Enantiomer molecules are like right and left hands: one cannot be superposed onto the ...
The term "chiral" in general is used to describe the object that is non-superposable on its mirror image. [18] In chemistry, chirality usually refers to molecules. Two mirror images of a chiral molecule are called enantiomers or optical isomers. Pairs of enantiomers are often designated as "right-", "left-handed" or, if they have no bias ...
Different enantiomers or diastereomers of a compound were formerly called optical isomers due to their different optical properties. [29] At one time, chirality was thought to be restricted to organic chemistry, but this misconception was overthrown by the resolution of a purely inorganic compound, a cobalt complex called hexol , by Alfred ...
As a result, different enantiomers of a compound may have substantially different biological effects. Pure enantiomers also exhibit the phenomenon of optical activity and can be separated only with the use of a chiral agent. In nature, only one enantiomer of most chiral biological compounds, such as amino acids (except glycine, which is achiral ...
Chemical compounds that come as mirror-image pairs are referred to by chemists as chiral or handed molecules. [1] Each twin is called an enantiomer. Drugs that exhibit handedness are referred to as chiral drugs. Chiral drugs that are equimolar (1:1) mixture of enantiomers are called racemic drugs
In 1848, Louis Pasteur became the first scientist to discover chirality and enantiomers while he was working with tartaric acid. During the experiments, he noticed that there were two crystal structures produced but these structures looked to be non-superimposable mirror images of each other; this observation of isomers that were non-superimposable mirror images became known as enantiomers.
Each enantiomer of a chiral compound typically rotates the plane of polarized light that passes through it. The rotation has the same magnitude but opposite senses for the two isomers, and can be a useful way of distinguishing and measuring their concentration in a solution. For this reason, enantiomers were formerly called "optical isomers".
Chirality with hands and two enantiomers of a generic amino acid The direction of current flow and induced magnetic flux follow a "handness" relationship. The term chiral / ˈ k aɪ r əl / describes an object, especially a molecule, which has or produces a non-superposable mirror image of itself.