Search results
Results from the WOW.Com Content Network
Single-scattering albedo is the ratio of scattering efficiency to total extinction efficiency (which is also termed "attenuance", a sum of scattering and absorption). Most often it is defined for small-particle scattering of electromagnetic waves. Single-scattering albedo is unitless, and a value of unity implies that all particle extinction is ...
Atmospheric scattering plays a role in removing higher frequencies from direct sunlight and scattering it about the sky. [2] This is why the sky appears blue and the sun yellow — more of the higher-frequency blue light arrives at the observer via indirect scattered paths; and less blue light follows the direct path, giving the sun a yellow ...
Multiple-scattering effects of light scattering by particles are treated by radiative transfer techniques (see, e.g. atmospheric radiative transfer codes). The relative size of a scattering particle is defined by its size parameter x, which is the ratio of its characteristic dimension to its wavelength:
The SSA tends to unity if scattering dominates, with relatively little absorption, and decreases as absorption increases, becoming zero for infinite absorption. For example, the sea-salt aerosol has an SSA of 1, as a sea-salt particle only scatters, whereas soot has an SSA of 0.23, showing that it is a major atmospheric aerosol absorber.
These factors vary with atmospheric composition, geographic location, and time (see position of the Sun). While directional-hemispherical reflectance factor is calculated for a single angle of incidence (i.e., for a given position of the Sun), albedo is the directional integration of reflectance over all solar angles in a given period. The ...
Scattering theory is a framework for studying and understanding the scattering of waves and particles. Wave scattering corresponds to the collision and scattering of a wave with some material object, for instance (sunlight) scattered by rain drops to form a rainbow.
The propagation of radiation through a medium is affected by absorption, emission, and scattering processes. The equation of radiative transfer describes these interactions mathematically. Equations of radiative transfer have application in a wide variety of subjects including optics, astrophysics, atmospheric science, and remote sensing.
From the basic definition we know that +Q is an angle of 0° and -Q is an angle of 90°. Therefore, Q is calculated from a sine function. Similarly U is calculated from a cosine function. The angle of polarization is always perpendicular to the scattering plane. Therefore, 90° is added to both scattering angles in order to find the ...