Search results
Results from the WOW.Com Content Network
Sensitivity analysis is the study of how the uncertainty in the output of a mathematical model or system (numerical or otherwise) can be divided and allocated to different sources of uncertainty in its inputs. [1] [2] This involves estimating sensitivity indices that quantify the influence of an input or group of inputs on the output.
Variance-based sensitivity analysis (often referred to as the Sobol’ method or Sobol’ indices, after Ilya M. Sobol’) is a form of global sensitivity analysis. [ 1 ] [ 2 ] Working within a probabilistic framework, it decomposes the variance of the output of the model or system into fractions which can be attributed to inputs or sets of inputs.
Youden's J statistic is = + = + with the two right-hand quantities being sensitivity and specificity.Thus the expanded formula is: = + + + = (+) (+) In this equation, TP is the number of true positives, TN the number of true negatives, FP the number of false positives and FN the number of false negatives.
There exist many software tools that can automate sensitivity analysis to various degrees. Here is a non-exhaustive list. Most of these tools have multiple options, including one-at-a-time sensitivity analysis, multidimensional discrete parametric, continuous low-discrepancy distributions, and pareto-front optimization (listed alphabetically):
In medicine and statistics, sensitivity and specificity mathematically describe the accuracy of a test that reports the presence or absence of a medical condition. If individuals who have the condition are considered "positive" and those who do not are considered "negative", then sensitivity is a measure of how well a test can identify true ...
In applied statistics, the Morris method for global sensitivity analysis is a so-called one-factor-at-a-time method, meaning that in each run only one input parameter is given a new value. It facilitates a global sensitivity analysis by making a number r {\displaystyle r} of local changes at different points x ( 1 → r ) {\displaystyle x(1 ...
The log diagnostic odds ratio can also be used to study the trade-off between sensitivity and specificity [5] [6] by expressing the log diagnostic odds ratio in terms of the logit of the true positive rate (sensitivity) and false positive rate (1 − specificity), and by additionally constructing a measure, :
FAST is more efficient to calculate sensitivities than other variance-based global sensitivity analysis methods via Monte Carlo integration. However the calculation by FAST is usually limited to sensitivities referred to as “main effects” or “first-order effects” due to the computational complexity in computing higher-order effects.