enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mollweide's formula - Wikipedia

    en.wikipedia.org/wiki/Mollweide's_formula

    In trigonometry, Mollweide's formula is a pair of relationships between sides and angles in a triangle. [ 1 ] [ 2 ] A variant in more geometrical style was first published by Isaac Newton in 1707 and then by Friedrich Wilhelm von Oppel [ de ] in 1746.

  3. List of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/List_of_trigonometric...

    Ptolemy's theorem states that the sum of the products of the lengths of opposite sides is equal to the product of the lengths of the diagonals. When those side-lengths are expressed in terms of the sin and cos values shown in the figure above, this yields the angle sum trigonometric identity for sine: sin(α + β) = sin α cos β + cos α sin β.

  4. Law of cosines - Wikipedia

    en.wikipedia.org/wiki/Law_of_cosines

    the third side of a triangle if two sides and an angle opposite to one of them is known (this side can also be found by two applications of the law of sines): [a] = ⁡ ⁡. These formulas produce high round-off errors in floating point calculations if the triangle is very acute, i.e., if c is small relative to a and b or γ is small compared to 1.

  5. Trigonometry - Wikipedia

    en.wikipedia.org/wiki/Trigonometry

    Trigonometry (from Ancient Greek τρίγωνον (trígōnon) 'triangle' and μέτρον (métron) 'measure') [1] is a branch of mathematics concerned with relationships between angles and side lengths of triangles. In particular, the trigonometric functions relate the angles of a right triangle with ratios of its side lengths.

  6. List of theorems - Wikipedia

    en.wikipedia.org/wiki/List_of_theorems

    Japanese theorem for concyclic polygons (Euclidean geometry) Japanese theorem for concyclic quadrilaterals (Euclidean geometry) John ellipsoid ; Jordan curve theorem ; Jordan–Hölder theorem (group theory) Jordan–Schönflies theorem (geometric topology) Jordan–Schur theorem (group theory)

  7. Pythagorean theorem - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_theorem

    In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle.It states that the area of the square whose side is the hypotenuse (the side opposite the right angle) is equal to the sum of the areas of the squares on the other two sides.

  8. Solution of triangles - Wikipedia

    en.wikipedia.org/wiki/Solution_of_triangles

    For the spherical case, one can first compute the length of side from the point at α to the ship (i.e. the side opposite to β) via the ASA formula ⁡ = ⁡ ⁡ ⁡ (+) + ⁡ ⁡ (), and insert this into the AAS formula for the right subtriangle that contains the angle α and the sides b and d: ⁡ = ⁡ ⁡ = ⁡ + ⁡ ⁡. (The planar ...

  9. Proofs of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/Proofs_of_trigonometric...

    For example, the sine of angle θ is defined as being the length of the opposite side divided by the length of the hypotenuse. The six trigonometric functions are defined for every real number , except, for some of them, for angles that differ from 0 by a multiple of the right angle (90°).