enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Wear coefficient - Wikipedia

    en.wikipedia.org/wiki/Wear_coefficient

    As can be estimated from weight loss and the density , the wear coefficient can also be expressed as: [2] K = 3 H W P L ρ {\displaystyle K={\frac {3HW}{PL\rho }}} As the standard method uses the total volume loss and the total sliding distance, there is a need to define the net steady-state wear coefficient:

  3. Fiber volume ratio - Wikipedia

    en.wikipedia.org/wiki/Fiber_volume_ratio

    Fiber volume ratio is an important mathematical element in composite engineering. Fiber volume ratio, or fiber volume fraction, is the percentage of fiber volume in the entire volume of a fiber-reinforced composite material. [1] When manufacturing polymer composites, fibers are impregnated with resin.

  4. Specific strength - Wikipedia

    en.wikipedia.org/wiki/Specific_strength

    It is also known as the strength-to-weight ratio or strength/weight ratio or strength-to-mass ratio. In fiber or textile applications, tenacity is the usual measure of specific strength. The SI unit for specific strength is Pa ⋅ m 3 / kg , or N ⋅m/kg, which is dimensionally equivalent to m 2 /s 2 , though the latter form is rarely used.

  5. Matching law - Wikipedia

    en.wikipedia.org/wiki/Matching_law

    If R 1 and R 2 are the rate of responses on two schedules that yield obtained (as distinct from programmed) rates of reinforcement Rf 1 and Rf 2, the strict matching law holds that the relative response rate R 1 / (R 1 + R 2) matches, that is, equals, the relative reinforcement rate Rf 1 / (Rf 1 + Rf 2). That is,

  6. Mathematical principles of reinforcement - Wikipedia

    en.wikipedia.org/wiki/Mathematical_principles_of...

    The rate of reinforcement for fixed-ratio schedules is easy to calculate, as reinforcement rate is directly proportional to response rate and inversely proportional to ratio requirement (Killeen, 1994). The schedule feedback function is therefore: =.

  7. Gauge factor - Wikipedia

    en.wikipedia.org/wiki/Gauge_factor

    Gauge factor (GF) or strain factor of a strain gauge is the ratio of relative change in electrical resistance R, to the mechanical strain ε. The gauge factor is defined as: [ 1 ] G F = Δ R / R Δ L / L = Δ R / R ε = 1 + 2 ν + Δ ρ / ρ ε {\displaystyle GF={\frac {\Delta R/R}{\Delta L/L}}={\frac {\Delta R/R}{\varepsilon }}=1+2\nu +{\frac ...

  8. What is a factor rate and how to calculate it - AOL

    www.aol.com/finance/factor-rate-calculate...

    A 1.35 factor rate is a mid-range rate lenders charge to borrow money. Factor rates typically fall between 1.1 and 1.5. With a 1.35 factor rate, it will cost $35,000 to borrow $100,000 ($100,000 x ...

  9. Yield (engineering) - Wikipedia

    en.wikipedia.org/wiki/Yield_(engineering)

    As grain size decreases, the surface area to volume ratio of the grain increases, allowing more buildup of dislocations at the grain edge. Since it requires much energy to move dislocations to another grain, these dislocations build up along the boundary, and increase the yield stress of the material.