Search results
Results from the WOW.Com Content Network
Binding of insulin to the α-subunit results in a conformational change of the protein, which activates tyrosine kinase domains on each β-subunit. The tyrosine kinase activity causes an autophosphorylation of several tyrosine residues in the β-subunit. The phosphorylation of 3 residues of tyrosine is necessary for the amplification of the ...
Hormones affect distant cells by binding to specific receptor proteins in the target cell, resulting in a change in cell function. When a hormone binds to the receptor, it results in the activation of a signal transduction pathway that typically activates gene transcription, resulting in increased expression of target proteins.
Glycogenesis responds to hormonal control. One of the main forms of control is the varied phosphorylation of glycogen synthase and glycogen phosphorylase. This is regulated by enzymes under the control of hormonal activity, which is in turn regulated by many factors.
The disequilibrium caused by these changes often causes withdrawal when the long-term use of a drug is discontinued. Upregulation and downregulation can also happen as a response to toxins or hormones. An example of upregulation in pregnancy is hormones that cause cells in the uterus to become more sensitive to oxytocin.
Hormones affect distant cells by binding to specific receptor proteins in the target cell resulting in a change in cell function. This may lead to cell type-specific responses that include rapid changes to the activity of existing proteins, or slower changes in the expression of target genes.
As a result, the GLUT-4 protein channels become embedded into the membrane, allowing glucose to be transported into the cell. The actions of insulin on the global human metabolism level include: Increase of cellular intake of certain substances, most prominently glucose in muscle and adipose tissue (about two-thirds of body cells) [ 71 ]
Cellular proteins are held in a relatively constant pH in order to prevent changes in the protonation state of amino acids. [24] If the pH drops, some amino acids in the polypeptide chain can become protonated if the pka of their R groups is higher than the new pH. Protonation can change the charge these R groups have.
Phosphorylation changes the conformation of an enzyme to a more active or inactive way (e.g. regulation of glycogen phosphorylase). Each phosphate group contains two negative charges, so the addition of this group can cause an important change in the conformation of the enzyme.