Search results
Results from the WOW.Com Content Network
Pyrimidine (C 4 H 4 N 2; / p ɪ ˈ r ɪ. m ɪ ˌ d iː n, p aɪ ˈ r ɪ. m ɪ ˌ d iː n /) is an aromatic, heterocyclic, organic compound similar to pyridine (C 5 H 5 N). [3] One of the three diazines (six-membered heterocyclics with two nitrogen atoms in the ring), it has nitrogen atoms at positions 1 and 3 in the ring.
Similarly, the simple-ring structure of cytosine, uracil, and thymine is derived of pyrimidine, so those three bases are called the pyrimidine bases. [ 6 ] Each of the base pairs in a typical double- helix DNA comprises a purine and a pyrimidine: either an A paired with a T or a C paired with a G.
Purines are biologically synthesized as nucleotides and in particular as ribotides, i.e. bases attached to ribose 5-phosphate.Both adenine and guanine are derived from the nucleotide inosine monophosphate (IMP), which is the first compound in the pathway to have a completely formed purine ring system.
RNA is composed of pyrimidine and purine nucleotides, both of which are necessary for reliable information transfer, and thus natural selection and Darwinian evolution. Becker et al. showed how pyrimidine nucleosides can be synthesized from small molecules and ribose , driven solely by wet-dry cycles.
In order to perform these essential cellular processes, both purines and pyrimidines are needed by the cell, and in similar quantities. Both purine and pyrimidine are self-inhibiting and activating. When purines are formed, they inhibit the enzymes required for more purine formation. This self-inhibition occurs as they also activate the enzymes ...
Uridine (symbol U or Urd) is a glycosylated pyrimidine analog containing uracil attached to a ribose ring (or more specifically, a ribofuranose) via a β-N 1-glycosidic bond.The analog is one of the five standard nucleosides which make up nucleic acids, the others being adenosine, thymidine, cytidine and guanosine.
The chemical structure of DNA base-pairs . A base pair (bp) is a fundamental unit of double-stranded nucleic acids consisting of two nucleobases bound to each other by hydrogen bonds. They form the building blocks of the DNA double helix and contribute to the folded structure of both DNA and RNA.
[7] A pseudoknot is a nucleic acid secondary structure containing at least two stem-loop structures in which half of one stem is intercalated between the two halves of another stem. Pseudoknots fold into knot-shaped three-dimensional conformations but are not true topological knots.