Search results
Results from the WOW.Com Content Network
These include infinite and infinitesimal numbers which possess certain properties of the real numbers. Surreal numbers: A number system that includes the hyperreal numbers as well as the ordinals. Fuzzy numbers: A generalization of the real numbers, in which each element is a connected set of possible values with weights.
A factorial x! is the product of all numbers from 1 to x. The first: 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916800, 479001600 (sequence A000142 in the OEIS). 0! = 1 is sometimes included. A k-smooth number (for a natural number k) has its prime factors ≤ k (so it is also j-smooth for any j > k).
The following is a list of all 52 currently known (as of January 2025) Mersenne primes and corresponding perfect numbers, along with their exponents p. The largest 18 of these have been discovered by the distributed computing project Great Internet Mersenne Prime Search , or GIMPS; their discoverers are listed as "GIMPS / name ", where the name ...
A list of articles about numbers (not about numerals). Topics include powers of ten, notable integers, prime and cardinal numbers, and the myriad system.
Benford's law, which describes the frequency of the first digit of many naturally occurring data. The ideal and robust soliton distributions. Zipf's law or the Zipf distribution. A discrete power-law distribution, the most famous example of which is the description of the frequency of words in the English language.
Here, the list [0..] represents , x^2>3 represents the predicate, and 2*x represents the output expression.. List comprehensions give results in a defined order (unlike the members of sets); and list comprehensions may generate the members of a list in order, rather than produce the entirety of the list thus allowing, for example, the previous Haskell definition of the members of an infinite list.
All sphenic numbers are by definition squarefree, because the prime factors must be distinct. The Möbius function of any sphenic number is −1. The cyclotomic polynomials Φ n ( x ) {\displaystyle \Phi _{n}(x)} , taken over all sphenic numbers n , may contain arbitrarily large coefficients [ 1 ] (for n a product of two primes the coefficients ...
A prime sieve or prime number sieve is a fast type of algorithm for finding primes. There are many prime sieves. The simple sieve of Eratosthenes (250s BCE), the sieve of Sundaram (1934), the still faster but more complicated sieve of Atkin [1] (2003), sieve of Pritchard (1979), and various wheel sieves [2] are most common.