Search results
Results from the WOW.Com Content Network
Besides being a conic section, a hyperbola can arise as the locus of points whose difference of distances to two fixed foci is constant, as a curve for each point of which the rays to two fixed foci are reflections across the tangent line at that point, or as the solution of certain bivariate quadratic equations such as the reciprocal ...
The two bimedians of a quadrilateral (segments joining midpoints of opposite sides) and the line segment joining the midpoints of the diagonals are concurrent and are all bisected by their point of intersection. [3]: p.125 In a tangential quadrilateral, the four angle bisectors concur at the center of the incircle. [4]
This implies near every point the intersection of the hyperboloid and its tangent plane at the point consists of two branches of curve that have distinct tangents at the point. In the case of the one-sheet hyperboloid, these branches of curves are lines and thus the one-sheet hyperboloid is a doubly ruled surface.
A ray through the unit hyperbola x 2 − y 2 = 1 at the point (cosh a, sinh a), where a is twice the area between the ray, the hyperbola, and the x-axis. For points on the hyperbola below the x-axis, the area is considered negative (see animated version with comparison with the trigonometric (circular) functions).
If the point p lies on the conic Q, the polar line of p is the tangent line to Q at p. The equation, in homogeneous coordinates, of the polar line of the point p with respect to the non-degenerate conic Q is given by = Just as p uniquely determines its polar line (with respect to a given conic), so each line determines a unique pole p ...
Specifically all the points lying on the line have their isogonal conjugates lying on the hyperbola. The Nagel point lies on the curve since its isogonal conjugate is the point of concurrency of the lines joining the vertices and the opposite Mixtilinear incircle touchpoints, also the in-similitude of the incircle and the circumcircle.
In geometry, a conjugate hyperbola to a given hyperbola shares the same asymptotes but lies in the opposite two sectors of the plane compared to the original hyperbola. A hyperbola and its conjugate may be constructed as conic sections obtained from an intersecting plane that meets tangent double cones sharing the same apex. Each cone has an ...
The complexity enters when calculating intersections at points of tangency, and intersections which are not just points, but have higher dimension. For example, if a plane is tangent to a surface along a line, the intersection number along the line should be at least two. These questions are discussed systematically in intersection theory.