Search results
Results from the WOW.Com Content Network
In topology and related areas of mathematics a uniformly connected space or Cantor connected space is a uniform space U such that every uniformly continuous function from U to a discrete uniform space is constant. A uniform space U is called uniformly disconnected if it is not uniformly connected.
Every Riemann surface is the quotient of the free, proper and holomorphic action of a discrete group on its universal covering and this universal covering, being a simply connected Riemann surface, is holomorphically isomorphic (one also says: "conformally equivalent" or "biholomorphic") to one of the following: the Riemann sphere; the complex ...
A topological space is said to be connected if it is not the union of two disjoint nonempty open sets. [2] A set is open if it contains no point lying on its boundary; thus, in an informal, intuitive sense, the fact that a space can be partitioned into disjoint open sets suggests that the boundary between the two sets is not part of the space, and thus splits it into two separate pieces.
The unit sphere can be replaced with the closed unit ball in the definition. Namely, a normed vector space is uniformly convex if and only if for every < there is some > so that, for any two vectors and in the closed unit ball (i.e. ‖ ‖ and ‖ ‖) with ‖ ‖, one has ‖ + ‖ (note that, given , the corresponding value of could be smaller than the one provided by the original weaker ...
In the mathematical field of topology, a uniform space is a set with additional structure that is used to define uniform properties, such as completeness, uniform continuity and uniform convergence. Uniform spaces generalize metric spaces and topological groups , but the concept is designed to formulate the weakest axioms needed for most proofs ...
One way to construct a uniform structure on a topological space X is to take the initial uniformity on X induced by C(X), the family of real-valued continuous functions on X. This is the coarsest uniformity on X for which all such functions are uniformly continuous. A subbase for this uniformity is given by the set of all entourages
A topological space X is path-connected if and only if its 0th homotopy group vanishes identically, as path-connectedness implies that any two points x 1 and x 2 in X can be connected with a continuous path which starts in x 1 and ends in x 2, which is equivalent to the assertion that every mapping from S 0 (a discrete set of two points) to X ...
In mathematics, the Fulton–Hansen connectedness theorem is a result from intersection theory in algebraic geometry, for the case of subvarieties of projective space with codimension large enough to make the intersection have components of dimension at least 1.