Search results
Results from the WOW.Com Content Network
In topology and related areas of mathematics a uniformly connected space or Cantor connected space is a uniform space U such that every uniformly continuous function from U to a discrete uniform space is constant. A uniform space U is called uniformly disconnected if it is not uniformly connected.
Thus is a sharp threshold for the connectedness of G(n, p). Further properties of the graph can be described almost precisely as n tends to infinity. For example, there is a k ( n ) (approximately equal to 2log 2 ( n )) such that the largest clique in G ( n , 0.5) has almost surely either size k ( n ) or k ( n ) + 1.
In mathematics compact convergence (or uniform convergence on compact sets) is a type of convergence that generalizes the idea of uniform convergence. It is associated with the compact-open topology .
Every Riemann surface is the quotient of the free, proper and holomorphic action of a discrete group on its universal covering and this universal covering, being a simply connected Riemann surface, is holomorphically isomorphic (one also says: "conformally equivalent" or "biholomorphic") to one of the following: the Riemann sphere; the complex ...
Thus, when discussing simply connected topological spaces, it is far more common to speak of simple connectivity than simple connectedness. On the other hand, in fields without a formally defined notion of connectivity, the word may be used as a synonym for connectedness. Another example of connectivity can be found in regular tilings.
Given some point in a topological space , the union of any collection of connected subsets such that each contains will once again be a connected subset. The connected component of a point in is the union of all connected subsets of that contain ; it is the unique largest (with respect to ) connected subset of that contains .
This gives a more concrete explanation for the utility of the definition of n-connectedness: for example, a space where the inclusion of the k-skeleton is n-connected (for n > k) – such as the inclusion of a point in the n-sphere – has the property that any cells in dimensions between k and n do not affect the lower-dimensional homotopy types.
Connectedness features prominently in the definition of total orders: a total (or linear) order is a partial order in which any two elements are comparable; that is, the order relation is connected. Similarly, a strict partial order that is connected is a strict total order.