Search results
Results from the WOW.Com Content Network
The lattice technique can also be used to multiply decimal fractions. For example, to multiply 5.8 by 2.13, the process is the same as to multiply 58 by 213 as described in the preceding section. To find the position of the decimal point in the final answer, one can draw a vertical line from the decimal point in 5.8, and a horizontal line from ...
First multiply the quarters by 47, the result 94 is written into the first workspace. Next, multiply cwt 12*47 = (2 + 10)*47 but don't add up the partial results (94, 470) yet. Likewise multiply 23 by 47 yielding (141, 940). The quarters column is totaled and the result placed in the second workspace (a trivial move in this case).
Compared to traditional long multiplication, the grid method differs in clearly breaking the multiplication and addition into two steps, and in being less dependent on place value. Whilst less efficient than the traditional method, grid multiplication is considered to be more reliable, in that children are less likely to make mistakes. Most ...
When performing any of these multiplication algorithms the following "steps" should be applied. The answer must be found one digit at a time starting at the least significant digit and moving left. The last calculation is on the leading zero of the multiplicand. Each digit has a neighbor, i.e., the digit on its right. The rightmost digit's ...
On a single-step or immediate-execution calculator, the user presses a key for each operation, calculating all the intermediate results, before the final value is shown. [ 1 ] [ 2 ] [ 3 ] On an expression or formula calculator , one types in an expression and then presses a key, such as "=" or "Enter", to evaluate the expression.
A simple arithmetic calculator was first included with Windows 1.0. [5]In Windows 3.0, a scientific mode was added, which included exponents and roots, logarithms, factorial-based functions, trigonometry (supports radian, degree and gradians angles), base conversions (2, 8, 10, 16), logic operations, statistical functions such as single variable statistics and linear regression.
Up to 203 program steps are available, and up to 16 program/step labels. Each step and label uses one byte, which consumes register space in 7 byte increments. Here is a sample program that computes the factorial of an integer number from 2 to 69. The program takes up 9 bytes.
Since 9 = 10 − 1, to multiply a number by nine, multiply it by 10 and then subtract the original number from the result. For example, 9 × 27 = 270 − 27 = 243. This method can be adjusted to multiply by eight instead of nine, by doubling the number being subtracted; 8 × 27 = 270 − (2×27) = 270 − 54 = 216.