Search results
Results from the WOW.Com Content Network
Planckian locus in the CIE 1931 chromaticity diagram. In physics and color science, the Planckian locus or black body locus is the path or locus that the color of an incandescent black body would take in a particular chromaticity space as the blackbody temperature changes.
The Planckian locus on the MacAdam (u, v) chromaticity diagram. The normals are lines of equal correlated color temperature. The CIE 1960 color space ("CIE 1960 UCS", variously expanded Uniform Color Space, Uniform Color Scale, Uniform Chromaticity Scale, Uniform Chromaticity Space) is another name for the (u, v) chromaticity space devised by David MacAdam.
The solid curve with dots on it, through the middle, is the Planckian locus, with the dots corresponding to a few select black-body temperatures that are indicated just above the x-axis. Since the human eye has three types of color sensors that respond to different ranges of wavelengths, a full plot of all visible colors is a three-dimensional ...
For light sources that do not follow the Planckian distribution, aligning them with a black body is not straightforward; thus, the concept of CCT is extended to represent these sources as accurately as possible on a one-dimensional color temperature scale, where "as accurately as possible" is determined within the framework of an objective ...
The CIE 1931 x,y chromaticity space, also showing the chromaticities of black-body light sources of various temperatures (Planckian locus), and lines of constant correlated color temperature Color temperature is a parameter describing the color of a visible light source by comparing it to the color of light emitted by an idealized opaque, non ...
The Planckian locus is depicted on the CIE 1960 UCS, along with isotherms (lines of constant correlated color temperature) and representative illuminant coordinates By the time the D-series was formalized by the CIE, [ 12 ] a computation of the chromaticity ( x , y ) {\displaystyle (x,y)} for a particular isotherm was included. [ 13 ]
A grey body is one where α, ρ and τ are constant for all wavelengths; this term also is used to mean a body for which α is temperature- and wavelength-independent. A white body is one for which all incident radiation is reflected uniformly in all directions: τ = 0, α = 0, and ρ = 1. For a black body, τ = 0, α = 1, and ρ = 0. Planck ...
The trans-Planckian problem can be conveniently considered in the framework of sonic black holes, condensed matter systems which can be described in a similar way as real black holes. In these systems, the analogue of the Planck scale is the interatomic scale, where the continuum description loses its validity.