Search results
Results from the WOW.Com Content Network
A sphere enclosed by its axis-aligned minimum bounding box (in 3 dimensions) In geometry, the minimum bounding box or smallest bounding box (also known as the minimum enclosing box or smallest enclosing box) for a point set S in N dimensions is the box with the smallest measure (area, volume, or hypervolume in higher dimensions) within which all the points lie.
In many applications the bounding box is aligned with the axes of the co-ordinate system, and it is then known as an axis-aligned bounding box (AABB). To distinguish the general case from an AABB, an arbitrary bounding box is sometimes called an oriented bounding box (OBB), or an OOBB when an existing object's local coordinate system is used ...
In geometry, an axis-aligned object (axis-parallel, axis-oriented) is an object in n-dimensional space whose shape is aligned with the coordinate axes of the space. Examples are axis-aligned rectangles (or hyperrectangles), the ones with edges parallel to the coordinate axes. Minimum bounding boxes are
In computer graphics, the slab method is an algorithm used to solve the ray-box intersection problem in case of an axis-aligned bounding box (AABB), i.e. to determine the intersection points between a ray and the box.
One of the most commonly used bounding volumes is an axis-aligned minimum bounding box. The axis-aligned minimum bounding box for a given set of data objects is easy to compute, needs only few bytes of storage, and robust intersection tests are easy to implement and extremely fast.
In computational geometry, the smallest enclosing box problem is that of finding the oriented minimum bounding box enclosing a set of points. It is a type of bounding volume. "Smallest" may refer to volume, area, perimeter, etc. of the box. It is sufficient to find the smallest enclosing box for the convex hull of the objects in question. It is ...
Axis-Align Bounding Boxes (AABB) and cuboids are popular due to their simplicity and quick intersection tests. [9] Bounding volumes such as Oriented Bounding Boxes (OBB) , K-DOPs and Convex-hulls offer a tighter approximation of the enclosed shape at the expense of a more elaborate intersection test.
The key feature of the BIH is the storage of 2 planes per node (as opposed to 1 for the kd tree and 6 for an axis aligned bounding box hierarchy), which allows for overlapping children (just like a BVH), but at the same time featuring an order on the children along one dimension/axis (as it is the case for kd trees).