Search results
Results from the WOW.Com Content Network
Circle theorem may refer to: Any of many theorems related to the circle; often taught as a group in GCSE mathematics. These include: Inscribed angle theorem. Thales' theorem, if A, B and C are points on a circle where the line AC is a diameter of the circle, then the angle ∠ABC is a right angle. Alternate segment theorem. Ptolemy's theorem.
Download QR code; Print/export Download as PDF; Printable version; In other projects Wikidata item; Appearance. ... Clifford's circle theorems; Constant chord theorem; D.
Download as PDF; Printable version; ... Pages in category "Theorems about triangles and circles" The following 18 pages are in this category, out of 18 total ...
The number of points (n), chords (c) and regions (r G) for first 6 terms of Moser's circle problem. In geometry, the problem of dividing a circle into areas by means of an inscribed polygon with n sides in such a way as to maximise the number of areas created by the edges and diagonals, sometimes called Moser's circle problem (named after Leo Moser), has a solution by an inductive method.
Japanese theorem for concyclic polygons (Euclidean geometry) Japanese theorem for concyclic quadrilaterals (Euclidean geometry) John ellipsoid ; Jordan curve theorem ; Jordan–Hölder theorem (group theory) Jordan–Schönflies theorem (geometric topology) Jordan–Schur theorem (group theory)
The second theorem considers five circles in general position passing through a single point M. Each subset of four circles defines a new point P according to the first theorem. Then these five points all lie on a single circle C. The third theorem considers six circles in general position that pass through a single point M. Each subset of five ...
In geometry, Descartes' theorem states that for every four kissing, or mutually tangent, circles, the radii of the circles satisfy a certain quadratic equation. By solving this equation, one can construct a fourth circle tangent to three given, mutually tangent circles. The theorem is named after René Descartes, who stated it in 1643.
Given points, A, B, C, and D on a circle, and circles passing through each adjacent pair of points, the alternate intersections of these four circles at W, X, Y and Z then lie on a common circle. This is known as the six circles theorem. [10]