Search results
Results from the WOW.Com Content Network
Because it is a regular polygon, a square is the quadrilateral of least perimeter enclosing a given area. Dually, a square is the quadrilateral containing the largest area within a given perimeter. [6] Indeed, if A and P are the area and perimeter enclosed by a quadrilateral, then the following isoperimetric inequality holds:
Quadrilateral – 4 sides Cyclic quadrilateral; Kite. Rectangle; Rhomboid; Rhombus; Square (regular quadrilateral) Tangential quadrilateral; Trapezoid. Isosceles trapezoid; Trapezus; Pentagon – 5 sides; Hexagon – 6 sides Lemoine hexagon; Heptagon – 7 sides; Octagon – 8 sides; Nonagon – 9 sides; Decagon – 10 sides; Hendecagon – 11 ...
A self-intersecting quadrilateral is called variously a cross-quadrilateral, crossed quadrilateral, butterfly quadrilateral or bow-tie quadrilateral. In a crossed quadrilateral, the four "interior" angles on either side of the crossing (two acute and two reflex , all on the left or all on the right as the figure is traced out) add up to 720°.
Tessellations of euclidean and hyperbolic space may also be considered regular polytopes. Note that an 'n'-dimensional polytope actually tessellates a space of one dimension less. For example, the (three-dimensional) platonic solids tessellate the 'two'-dimensional 'surface' of the sphere.
height/altitude: trapezoid/trapezium with opposing triangles , formed by the diagonals. Given a convex quadrilateral, the following properties are equivalent, and each implies that the quadrilateral is a trapezoid: It has two adjacent angles that are supplementary, that is, they add up to 180 degrees.
Solid geometry, including table of major three-dimensional shapes; Box-drawing character; Cuisenaire rods (learning aid) Geometric shape; Geometric Shapes (Unicode block) Glossary of shapes with metaphorical names; List of symbols; Pattern Blocks (learning aid)
It divides the quadrilateral into two congruent triangles that are mirror images of each other. [7] One diagonal bisects both of the angles at its two ends. [7] Kite quadrilaterals are named for the wind-blown, flying kites, which often have this shape [10] [11] and which are in turn named for a hovering bird and the sound it makes.
The artist M. C. Escher is famous for making tessellations with irregular interlocking tiles, shaped like animals and other natural objects. [16] If suitable contrasting colours are chosen for the tiles of differing shape, striking patterns are formed, and these can be used to decorate physical surfaces such as church floors.