Search results
Results from the WOW.Com Content Network
In fluid mechanics, a two-dimensional flow is a form of fluid flow where the flow velocity at every point is parallel to a fixed plane. The velocity at any point on a ...
The two-dimensional (or Lagrange) stream function, introduced by Joseph Louis Lagrange in 1781, [1] is defined for incompressible (divergence-free), two-dimensional flows. The Stokes stream function , named after George Gabriel Stokes , [ 2 ] is defined for incompressible, three-dimensional flows with axisymmetry .
In physics, circulation is the ... In fluid dynamics, the lift per unit span (L') acting on a body in a two-dimensional flow field is directly proportional to the ...
A two-dimensional flow that, at the highlighted point, has only a strain rate component, with no mean velocity or rotational component. In continuum mechanics, the strain-rate tensor or rate-of-strain tensor is a physical quantity that describes the rate of change of the strain (i.e., the relative deformation) of a material in the neighborhood of a certain point, at a certain moment of time.
Shock waves at the pointed leading edge of two-dimensional wedge or three-dimensional cone (Taylor–Maccoll flow) has constant intensity. 2) For weak shock waves, the entropy jump across the shock wave is a third-order quantity in terms of shock wave strength and therefore can be neglected. Shock waves in slender bodies lies nearly parallel to ...
This is true in the case of two-dimensional potential flow (i.e. two-dimensional zero viscosity flow), in which case the flowfield can be modeled as a complex-valued field on the complex plane. Vorticity is useful for understanding how ideal potential flow solutions can be perturbed to model real flows.
Assume for a two-dimensional turbulent flow that one was able to locate a specific point in the fluid and measure the actual flow velocity v = (v x,v y) of every particle that passed through that point at any given time. Then one would find the actual flow velocity fluctuating about a mean value:
In mathematics, a flow formalizes the idea of the motion of particles in a fluid. Flows are ubiquitous in science, including engineering and physics. The notion of flow is basic to the study of ordinary differential equations. Informally, a flow may be viewed as a continuous motion of points over time.