Search results
Results from the WOW.Com Content Network
In fluid mechanics, a two-dimensional flow is a form of fluid flow where the flow velocity at every point is parallel to a fixed plane. The velocity at any point on a ...
The two-dimensional (or Lagrange) stream function, introduced by Joseph Louis Lagrange in 1781, [1] is defined for incompressible (divergence-free), two-dimensional flows. The Stokes stream function , named after George Gabriel Stokes , [ 2 ] is defined for incompressible, three-dimensional flows with axisymmetry .
This is true in the case of two-dimensional potential flow (i.e. two-dimensional zero viscosity flow), in which case the flowfield can be modeled as a complex-valued field on the complex plane. Vorticity is useful for understanding how ideal potential flow solutions can be perturbed to model real flows.
In fluid dynamics, the lift per unit span (L') acting on a body in a two-dimensional flow field is directly proportional to the circulation, i.e. it can be expressed as the product of the circulation Γ about the body, the fluid density , and the speed of the body relative to the free-stream : ′ =
Measurements are made in a 2-D slice, illuminated by a thin laser sheet (a thin plane); a low density of seeded particles allows for tracking each of them individually for several frames. the three-dimensional particle tracking velocimetry (3-D PTV) is a distinctive experimental technique originally developed to study fully turbulent flows. It ...
A two-dimensional flow that, at the highlighted point, has only a strain rate component, with no mean velocity or rotational component. In continuum mechanics, the strain-rate tensor or rate-of-strain tensor is a physical quantity that describes the rate of change of the strain (i.e., the relative deformation) of a material in the neighborhood of a certain point, at a certain moment of time.
The term (ω ∙ ∇) u on the right-hand side describes the stretching or tilting of vorticity due to the flow velocity gradients. Note that (ω ∙ ∇) u is a vector quantity, as ω ∙ ∇ is a scalar differential operator, while ∇u is a nine-element tensor quantity. The term ω(∇ ∙ u) describes stretching of vorticity due to flow ...
The equation is named after Lord Rayleigh, who introduced it in 1880. [2] The Orr–Sommerfeld equation – introduced later, for the study of stability of parallel viscous flow – reduces to Rayleigh's equation when the viscosity is zero. [3] Rayleigh's equation, together with appropriate boundary conditions, most often poses an eigenvalue ...