Search results
Results from the WOW.Com Content Network
An interesting result of this operation is that self-dual 4-polytope {p,q,p} (and honeycombs) remain cell-transitive after bitruncation. There are 5 such forms corresponding to the five truncated regular polyhedra: t{q,p}. Two are honeycombs on the 3-sphere, one a honeycomb in Euclidean 3-space, and two are honeycombs in hyperbolic 3-space.
where r, s, and t are positive real numbers that determine the main features of the superquadric. Namely: less than 1: a pointy octahedron modified to have concave faces and sharp edges. exactly 1: a regular octahedron. between 1 and 2: an octahedron modified to have convex faces, blunt edges and blunt corners. exactly 2: a sphere
An object with this symmetry is characterized by the part of the object in the fundamental domain, for example the cube is given by z = 1, and the octahedron by x + y + z = 1 (or the corresponding inequalities, to get the solid instead of the surface).
The four quadrays may be linearly combined to provide integer coordinates for the inverse tetrahedron (0,1,1,1), (1,0,1,1), (1,1,0,1), (1,1,1,0), and for the cube, octahedron, rhombic dodecahedron and cuboctahedron of volumes 3, 4, 6 and 20 respectively, given the starting tetrahedron of unit volume.
In numerical analysis, Lebedev quadrature, named after Vyacheslav Ivanovich Lebedev, is an approximation to the surface integral of a function over a three-dimensional sphere.
An example is the rhombicuboctahedron, constructed by separating the cube or octahedron's faces from the centroid and filling them with squares. [8] Snub is a construction process of polyhedra by separating the polyhedron faces, twisting their faces in certain angles, and filling them up with equilateral triangles .
The balls used in association football and team handball are perhaps the best-known example of a spherical polyhedron analog to the truncated icosahedron, found in everyday life. [14] The ball comprises the same pattern of regular pentagons and regular hexagons, each of which is painted in black and white respectively; still, its shape is more ...
If the boundary of Ω is C k for k ≥ 2 (see Differentiability classes) then d is C k on points sufficiently close to the boundary of Ω. [3] In particular, on the boundary f satisfies = (), where N is the inward normal vector field. The signed distance function is thus a differentiable extension of the normal vector field.