Search results
Results from the WOW.Com Content Network
There are two major types of problems in uncertainty quantification: one is the forward propagation of uncertainty (where the various sources of uncertainty are propagated through the model to predict the overall uncertainty in the system response) and the other is the inverse assessment of model uncertainty and parameter uncertainty (where the ...
Conformal prediction (CP) is a machine learning framework for uncertainty quantification that produces statistically valid prediction regions (prediction intervals) for any underlying point predictor (whether statistical, machine, or deep learning) only assuming exchangeability of the data. CP works by computing nonconformity scores on ...
A cognitive computer is a computer that hardwires artificial intelligence and machine learning algorithms into an integrated circuit that closely reproduces the behavior of the human brain. [1] It generally adopts a neuromorphic engineering approach. Synonyms include neuromorphic chip and cognitive chip. [2] [3]
This field of study has its historical roots in numerous disciplines including machine learning, experimental psychology and Bayesian statistics.As early as the 1860s, with the work of Hermann Helmholtz in experimental psychology, the brain's ability to extract perceptual information from sensory data was modeled in terms of probabilistic estimation.
As early as 2006, researchers at Georgia Tech published a field programmable neural array. [13] This chip was the first in a line of increasingly complex arrays of floating gate transistors that allowed programmability of charge on the gates of MOSFETs to model the channel-ion characteristics of neurons in the brain and was one of the first cases of a silicon programmable array of neurons.
Predictive coding was initially developed as a model of the sensory system, where the brain solves the problem of modelling distal causes of sensory input through a version of Bayesian inference. It assumes that the brain maintains an active internal representations of the distal causes, which enable it to predict the sensory inputs. [5]
The free energy principle is a theoretical framework suggesting that the brain reduces surprise or uncertainty by making predictions based on internal models and updating them using sensory input. It highlights the brain's objective of aligning its internal model and the external world to enhance prediction accuracy .
An ANN consists of connected units or nodes called artificial neurons, which loosely model the neurons in the brain. Artificial neuron models that mimic biological neurons more closely have also been recently investigated and shown to significantly improve performance. These are connected by edges, which model the synapses in the brain. Each ...