Search results
Results from the WOW.Com Content Network
For example, in C it is typical to define a linked list in terms of an element that contains a pointer to the next element of the list: struct element { struct element * next ; int value ; }; struct element * head = NULL ;
In C++, a class can overload all of the pointer operations, so an iterator can be implemented that acts more or less like a pointer, complete with dereference, increment, and decrement. This has the advantage that C++ algorithms such as std::sort can immediately be applied to plain old memory buffers, and that there is no new syntax to learn ...
C++ is an example of a language that supports both inner classes and inner types (via typedef declarations). [30] [31] A local class is a class defined within a procedure or function. Such structure limits references to the class name to within the scope where the class is declared.
Any class that fulfills the allocator requirements can be used as an allocator. In particular, a class A capable of allocating memory for an object of type T must provide the types A::pointer, A::const_pointer, A::reference, A::const_reference, and A::value_type for generically declaring objects and references (or pointers) to objects of type T.
"Ordered" means that the elements of the data type have some kind of explicit order to them, where an element can be considered "before" or "after" another element. This order is usually determined by the order in which the elements are added to the structure, but the elements can be rearranged in some contexts, such as sorting a list. For a ...
Although function pointers in C and C++ can be implemented as simple addresses, so that typically sizeof(Fx)==sizeof(void *), member pointers in C++ are sometimes implemented as "fat pointers", typically two or three times the size of a simple function pointer, in order to deal with virtual methods and virtual inheritance [citation needed].
Smart pointers can facilitate intentional programming by expressing, in the type, how the memory of the referent of the pointer will be managed. For example, if a C++ function returns a pointer, there is no way to know whether the caller should delete the memory of the referent when the caller is finished with the information.
Many languages have explicit pointers or references. Reference types differ from these in that the entities they refer to are always accessed via references; for example, whereas in C++ it's possible to have either a std:: string and a std:: string *, where the former is a mutable string and the latter is an explicit pointer to a mutable string (unless it's a null pointer), in Java it is only ...