Search results
Results from the WOW.Com Content Network
In mathematics and computability theory, an elementary cellular automaton is a one-dimensional cellular automaton where there are two possible states (labeled 0 and 1) and the rule to determine the state of a cell in the next generation depends only on the current state of the cell and its two immediate neighbors.
A cellular automaton (pl. cellular automata, abbrev. CA) is a discrete model of computation studied in automata theory. Cellular automata are also called cellular spaces, tessellation automata, homogeneous structures, cellular structures, tessellation structures, and iterative arrays. [2] Cellular automata have found application in various ...
The Game of Life, also known as Conway's Game of Life or simply Life, is a cellular automaton devised by the British mathematician John Horton Conway in 1970. [1] It is a zero-player game , [ 2 ] [ 3 ] meaning that its evolution is determined by its initial state, requiring no further input.
Rule 30 is an elementary cellular automaton introduced by Stephen Wolfram in 1983. [2] Using Wolfram's classification scheme , Rule 30 is a Class III rule, displaying aperiodic, chaotic behaviour. This rule is of particular interest because it produces complex, seemingly random patterns from simple, well-defined rules.
Time-space diagram of Rule 90 with random initial conditions. Each row of pixels is a configuration of the automaton; time progresses vertically from top to bottom. In the mathematical study of cellular automata, Rule 90 is an elementary cellular automaton based on the exclusive or function. It consists of a one-dimensional array of cells, each ...
The Rule 110 cellular automaton (often called simply Rule 110) [a] is an elementary cellular automaton with interesting behavior on the boundary between stability and chaos. In this respect, it is similar to Conway's Game of Life. Like Life, Rule 110 with a particular repeating background pattern is known to be Turing complete. [2]
A state of the Rule 184 automaton consists of a one-dimensional array of cells, each containing a binary value (0 or 1). In each step of its evolution, the Rule 184 automaton applies the following rule to each of the cells in the array, simultaneously for all cells, to determine the new state of the cell: [3]
For instance, in this notation, Conway's Game of Life is denoted 23/3. [2] [3] In the notation used by the Golly open-source cellular automaton package and in the RLE format for storing cellular automaton patterns, a rule is written in the form By/Sx where x and y are the same as in the MCell notation. Thus, in this notation, Conway's Game of ...