Search results
Results from the WOW.Com Content Network
Therefore, compilers will attempt to transform the first form into the second; this type of optimization is known as map fusion and is the functional analog of loop fusion. [2] Map functions can be and often are defined in terms of a fold such as foldr, which means one can do a map-fold fusion: foldr f z . map g is equivalent to foldr (f . g) z.
With var, let, and const statements, only the declaration is hoisted; assignments are not hoisted. Thus a var x = 1 statement in the middle of the function is equivalent to a var x declaration statement at the top of the function, and an x = 1 assignment statement at that point in the middle of
Set-builder notation can be used to describe a set that is defined by a predicate, that is, a logical formula that evaluates to true for an element of the set, and false otherwise. [2] In this form, set-builder notation has three parts: a variable, a colon or vertical bar separator, and a predicate. Thus there is a variable on the left of the ...
An example of a Bloom filter, representing the set {x, y, z} . The colored arrows show the positions in the bit array that each set element is mapped to. The element w is not in the set {x, y, z} , because it hashes to one bit-array position containing 0. For this figure, m = 18 and k = 3. An empty Bloom filter is a bit array of m bits, all set ...
Executing a set of statements only if some condition is met (choice - i.e., conditional branch) Executing a set of statements zero or more times, until some condition is met (i.e., loop - the same as conditional branch) Executing a set of distant statements, after which the flow of control usually returns (subroutines, coroutines, and ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
A Karnaugh map (KM or K-map) is a diagram that can be used to simplify a Boolean algebra expression. Maurice Karnaugh introduced it in 1953 [ 1 ] [ 2 ] as a refinement of Edward W. Veitch 's 1952 Veitch chart , [ 3 ] [ 4 ] which itself was a rediscovery of Allan Marquand 's 1881 logical diagram [ 5 ] [ 6 ] (aka.
An important special case is when the index set is , the natural numbers: this Cartesian product is the set of all infinite sequences with the i-th term in its corresponding set X i. For example, each element of ∏ n = 1 ∞ R = R × R × ⋯ {\displaystyle \prod _{n=1}^{\infty }\mathbb {R} =\mathbb {R} \times \mathbb {R} \times \cdots } can ...