Search results
Results from the WOW.Com Content Network
Example of a naive Bayes classifier depicted as a Bayesian Network. In statistics, naive Bayes classifiers are a family of linear "probabilistic classifiers" which assumes that the features are conditionally independent, given the target class. The strength (naivety) of this assumption is what gives the classifier its name.
Naive Bayes spam filtering is a baseline technique for dealing with spam that can tailor itself to the email needs of individual users and give low false positive spam detection rates that are generally acceptable to users. It is one of the oldest ways of doing spam filtering, with roots in the 1990s.
The simplest one is Naive Bayes classifier. [2] Using the language of graphical models, the Naive Bayes classifier is described by the equation below. The basic idea (or assumption) of this model is that each category has its own distribution over the codebooks, and that the distributions of each category are observably different.
In statistical classification, the Bayes classifier is the classifier having the smallest probability of misclassification of all classifiers using the same set of features. [ 1 ] Definition
Examples of such algorithms include: Linear Discriminant Analysis (LDA)—assumes Gaussian conditional density models; Naive Bayes classifier with multinomial or multivariate Bernoulli event models. The second set of methods includes discriminative models, which attempt to maximize the quality of the output on a training set.
It can be drastically simplified by assuming that the probability of appearance of a word knowing the nature of the text (spam or not) is independent of the appearance of the other words. This is the naive Bayes assumption and this makes this spam filter a naive Bayes model. For instance, the programmer can assume that:
Some classification models, such as naive Bayes, logistic regression and multilayer perceptrons (when trained under an appropriate loss function) are naturally probabilistic. Other models such as support vector machines are not, but methods exist to turn them into probabilistic classifiers.
A classical example of an inductive bias is Occam's razor, assuming that the simplest consistent hypothesis about the target function is actually the best. Here, consistent means that the hypothesis of the learner yields correct outputs for all of the examples that have been given to the algorithm.