Search results
Results from the WOW.Com Content Network
Direct current (DC) (red line). The vertical axis shows current or voltage and the horizontal 't' axis measures time and shows the zero value. Direct current (DC) is one-directional flow of electric charge. An electrochemical cell is a prime example of DC power.
A current–voltage characteristic or I–V curve (current–voltage curve) is a relationship, typically represented as a chart or graph, between the electric current through a circuit, device, or material, and the corresponding voltage, or potential difference, across it.
Once a DC operating point is defined by the DC load line, an AC load line can be drawn through the Q point. The AC load line is a straight line with a slope equal to the AC impedance facing the nonlinear device, which is in general different from the DC resistance. The ratio of AC voltage to current in the device is defined by this line.
A schematic representation of long distance electric power transmission. From left to right: G=generator, U=step-up transformer, V=voltage at beginning of transmission line, Pt=power entering transmission line, I=current in wires, R=total resistance in wires, Pw=power lost in transmission line, Pe=power reaching the end of the transmission line, D=step-down transformer, C=consumers.
Angle notation can easily describe leading and lagging current: . [1] In this equation, the value of theta is the important factor for leading and lagging current. As mentioned in the introduction above, leading or lagging current represents a time shift between the current and voltage sine curves, which is represented by the angle by which the curve is ahead or behind of where it would be ...
Pulsed DC (PDC) or pulsating direct current is a periodic current which changes in value but never changes direction. Some authors use the term pulsed DC to describe a signal consisting of one or more rectangular ("flat-topped"), rather than sinusoidal, pulses.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The neutral current can be determined by adding the three phase currents together as complex numbers and then converting from rectangular to polar co-ordinates. If the three-phase root mean square (RMS) currents are I L 1 {\displaystyle I_{L1}} , I L 2 {\displaystyle I_{L2}} , and I L 3 {\displaystyle I_{L3}} , the neutral RMS current is: