enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Uranium-238 - Wikipedia

    en.wikipedia.org/wiki/Uranium-238

    In a fission nuclear reactor, uranium-238 can be used to generate plutonium-239, which itself can be used in a nuclear weapon or as a nuclear-reactor fuel supply. In a typical nuclear reactor, up to one-third of the generated power comes from the fission of 239 Pu, which is not supplied as a fuel to the reactor, but rather, produced from 238 U. [5] A certain amount of production of 239

  3. Reactor-grade plutonium - Wikipedia

    en.wikipedia.org/wiki/Reactor-grade_plutonium

    Reactor-grade plutonium (RGPu) [1] [2] is the isotopic grade of plutonium that is found in spent nuclear fuel after the uranium-235 primary fuel that a nuclear power reactor uses has burnt up. The uranium-238 from which most of the plutonium isotopes derive by neutron capture is found along with the U-235 in the low enriched uranium fuel of ...

  4. Discovery of nuclear fission - Wikipedia

    en.wikipedia.org/wiki/Discovery_of_nuclear_fission

    238 92 U + n → 239 92 U (23 minutes) → 239 93 ekaRe; Meitner was certain that these had to be (n, γ) reactions, as slow neutrons lacked the energy to chip off protons or alpha particles. She considered the possibility that the reactions were from different isotopes of uranium; three were known: uranium-238, uranium-235 and uranium-234.

  5. Yellowcake - Wikipedia

    en.wikipedia.org/wiki/Yellowcake

    The uranium in yellowcake is almost exclusively (>99%) U-238, with very low radioactivity. U-238 has a half-life of 4.468 billion years and emits radiation at a slow rate. This stage of processing is before the more radioactive U-235 is concentrated, so by definition, this stage of uranium has the same radioactivity as it did in nature when it ...

  6. Isotopes of uranium - Wikipedia

    en.wikipedia.org/wiki/Isotopes_of_uranium

    234 U occurs in natural uranium as an indirect decay product of uranium-238, but makes up only 55 parts per million of the uranium because its half-life of 245,500 years is only about 1/18,000 that of 238 U. The path of production of 234 U is this: 238 U alpha decays to thorium-234. Next, with a short half-life, 234 Th beta decays to ...

  7. Decay chain - Wikipedia

    en.wikipedia.org/wiki/Decay_chain

    The three long-lived nuclides are uranium-238 (half-life 4.5 billion years), uranium-235 (half-life 700 million years) and thorium-232 (half-life 14 billion years). The fourth chain has no such long-lasting bottleneck nuclide near the top, so almost all of the nuclides in that chain have long since decayed down to just before the end: bismuth-209.

  8. Radon-222 - Wikipedia

    en.wikipedia.org/wiki/Radon-222

    It is transient in the decay chain of primordial uranium-238 and is the immediate decay product of radium-226. Radon-222 was first observed in 1899, and was identified as an isotope of a new element several years later. In 1957, the name radon, formerly the name of only radon-222, became the name of the element.

  9. Frisch–Peierls memorandum - Wikipedia

    en.wikipedia.org/wiki/Frisch–Peierls_memorandum

    George Placzek, who was skeptical about the whole idea of fission, challenged Bohr to explain why uranium seemed to fission with both very fast and very slow neutrons. Bohr had an epiphany that the fission at low energies was due to the uranium-235 isotope, while at high energies it was due mainly to the more abundant uranium-238 isotope. [23]