enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Uranium-238 - Wikipedia

    en.wikipedia.org/wiki/Uranium-238

    In a fission nuclear reactor, uranium-238 can be used to generate plutonium-239, which itself can be used in a nuclear weapon or as a nuclear-reactor fuel supply. In a typical nuclear reactor, up to one-third of the generated power comes from the fission of 239 Pu, which is not supplied as a fuel to the reactor, but rather, produced from 238 U. [5] A certain amount of production of 239

  3. U-238 - Wikipedia

    en.wikipedia.org/wiki/U-238

    Uranium-238 (U-238 or 238 U), the most common isotope of uranium Topics referred to by the same term This disambiguation page lists articles associated with the same title formed as a letter–number combination.

  4. Traveling wave reactor - Wikipedia

    en.wikipedia.org/wiki/Traveling_wave_reactor

    Red: uranium-238, light green: plutonium-239, black: fission products. Intensity of blue color between the tiles indicates neutron density A traveling-wave reactor ( TWR ) is a proposed type of nuclear fission reactor that can convert fertile material into usable fuel through nuclear transmutation , in tandem with the burnup of fissile material.

  5. History of nuclear weapons - Wikipedia

    en.wikipedia.org/wiki/History_of_nuclear_weapons

    Uranium appears in nature primarily in two isotopes: uranium-238 and uranium-235. When the nucleus of uranium-235 absorbs a neutron, it undergoes nuclear fission, releasing energy and, on average, 2.5 neutrons. Because uranium-235 releases more neutrons than it absorbs, it can support a chain reaction and so is described as fissile. Uranium-238 ...

  6. Discovery of nuclear fission - Wikipedia

    en.wikipedia.org/wiki/Discovery_of_nuclear_fission

    238 92 U + n → 239 92 U (23 minutes) → 239 93 ekaRe; Meitner was certain that these had to be (n, γ) reactions, as slow neutrons lacked the energy to chip off protons or alpha particles. She considered the possibility that the reactions were from different isotopes of uranium; three were known: uranium-238, uranium-235 and uranium-234.

  7. Enriched uranium - Wikipedia

    en.wikipedia.org/wiki/Enriched_uranium

    Enriched uranium is a type of uranium in which the percent composition of uranium-235 (written 235 U) has been increased through the process of isotope separation.Naturally occurring uranium is composed of three major isotopes: uranium-238 (238 U with 99.2732–99.2752% natural abundance), uranium-235 (235 U, 0.7198–0.7210%), and uranium-234 (234 U, 0.0049–0.0059%).

  8. Isotopes of uranium - Wikipedia

    en.wikipedia.org/wiki/Isotopes_of_uranium

    234 U occurs in natural uranium as an indirect decay product of uranium-238, but makes up only 55 parts per million of the uranium because its half-life of 245,500 years is only about 1/18,000 that of 238 U. The path of production of 234 U is this: 238 U alpha decays to thorium-234. Next, with a short half-life, 234 Th beta decays to ...

  9. Fission track dating - Wikipedia

    en.wikipedia.org/wiki/Fission_track_dating

    Unlike other isotopic dating methods, the "daughter" in fission track dating is an effect in the crystal rather than a daughter isotope.Uranium-238 undergoes spontaneous fission decay at a known rate, and it is the only isotope with a decay rate that is relevant to the significant production of natural fission tracks; other isotopes have fission decay rates too slow to be of consequence.