Search results
Results from the WOW.Com Content Network
Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariants that classify topological spaces up to homeomorphism, though usually most classify up to homotopy equivalence. Although algebraic topology primarily uses algebra to study topological ...
The multiplicative structure of an H-space adds structure to its homology and cohomology groups. For example, the cohomology ring of a path-connected H-space with finitely generated and free cohomology groups is a Hopf algebra. [9] Also, one can define the Pontryagin product on the homology groups of an H-space. [10]
A result of this kind was first stated by Solomon Lefschetz for homology groups of complex algebraic varieties. Similar results have since been found for homotopy groups, in positive characteristic, and in other homology and cohomology theories. A far-reaching generalization of the hard Lefschetz theorem is given by the decomposition theorem.
In mathematics, the term homology, originally introduced in algebraic topology, has three primary, closely-related usages.The most direct usage of the term is to take the homology of a chain complex, resulting in a sequence of abelian groups called homology groups.
In mathematics, the Hurewicz theorem is a basic result of algebraic topology, connecting homotopy theory with homology theory via a map known as the Hurewicz homomorphism. The theorem is named after Witold Hurewicz , and generalizes earlier results of Henri Poincaré .
Given two directed paths γ and δ, a directed homotopy from γ to δ is a morphism of directed spaces h whose underlying map U(h) is a homotopy –in the usual sense– between the underlying paths U(γ) and U(δ). In algebraic topology, there is a homotopy from α to β if and only if there is a homotopy from β to α. Due to non ...
Homological algebra is the branch of mathematics that studies homology in a general algebraic setting. It is a relatively young discipline, whose origins can be traced to investigations in combinatorial topology (a precursor to algebraic topology ) and abstract algebra (theory of modules and syzygies ) at the end of the 19th century, chiefly by ...
Let = be a -graded algebra, with product , equipped with a map : of degree (homologically graded) or degree + (cohomologically graded). We say that (,,) is a differential graded algebra if is a differential, giving the structure of a chain complex or cochain complex (depending on the degree), and satisfies a graded Leibniz rule.