Search results
Results from the WOW.Com Content Network
Applied probabilists are particularly concerned with the application of stochastic processes, and probability more generally, to the natural, applied and social sciences, including biology, physics (including astronomy), chemistry, medicine, computer science and information technology, and economics.
This is a list of probability topics. It overlaps with the (alphabetical) list of statistical topics. There are also the outline of probability and catalog of articles in probability theory. For distributions, see List of probability distributions. For journals, see list of probability journals.
In probability and statistics, an elliptical distribution is any member of a broad family of probability distributions that generalize the multivariate normal distribution. Intuitively, in the simplified two and three dimensional case, the joint distribution forms an ellipse and an ellipsoid, respectively, in iso-density plots.
Probability theory or probability calculus is the branch of mathematics concerned with probability. Although there are several different probability interpretations , probability theory treats the concept in a rigorous mathematical manner by expressing it through a set of axioms .
The typical parameters are the expectations, variance, etc. Unlike parametric statistics, nonparametric statistics make no assumptions about the probability distributions of the variables being assessed. [9] Non-parametric methods are widely used for studying populations that take on a ranked order (such as movie reviews receiving one to four ...
Renewal theory is the branch of probability theory that generalizes the Poisson process for arbitrary holding times. Instead of exponentially distributed holding times, a renewal process may have any independent and identically distributed (IID) holding times that have finite mean. A renewal-reward process additionally has a random sequence of ...
The probability distribution of the sum of two or more independent random variables is the convolution of their individual distributions. The term is motivated by the fact that the probability mass function or probability density function of a sum of independent random variables is the convolution of their corresponding probability mass functions or probability density functions respectively.
Epistemic or subjective probability is sometimes called credence, as opposed to the term chance for a propensity probability. Some examples of epistemic probability are to assign a probability to the proposition that a proposed law of physics is true or to determine how probable it is that a suspect committed a crime, based on the evidence ...