enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Eigenvalues and eigenvectors - Wikipedia

    en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

    The eigenspace E associated with λ is therefore a linear subspace of V. [40] If that subspace has dimension 1, it is sometimes called an eigenline. [41] The geometric multiplicity γ T (λ) of an eigenvalue λ is the dimension of the eigenspace associated with λ, i.e., the maximum number of linearly independent eigenvectors associated with ...

  3. Jordan normal form - Wikipedia

    en.wikipedia.org/wiki/Jordan_normal_form

    Finally, the eigenspace corresponding to the eigenvalue 4 is also one-dimensional (even though this is a double eigenvalue) and is spanned by x = (1, 0, −1, 1) T. So, the geometric multiplicity (that is, the dimension of the eigenspace of the given eigenvalue) of each of the three eigenvalues is one.

  4. Eigendecomposition of a matrix - Wikipedia

    en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix

    Recall that the geometric multiplicity of an eigenvalue can be described as the dimension of the associated eigenspace, the nullspace of λI − A. The algebraic multiplicity can also be thought of as a dimension: it is the dimension of the associated generalized eigenspace (1st sense), which is the nullspace of the matrix ( λ I − A ) k for ...

  5. Eigenvalue algorithm - Wikipedia

    en.wikipedia.org/wiki/Eigenvalue_algorithm

    Given an n × n square matrix A of real or complex numbers, an eigenvalue λ and its associated generalized eigenvector v are a pair obeying the relation [1] =,where v is a nonzero n × 1 column vector, I is the n × n identity matrix, k is a positive integer, and both λ and v are allowed to be complex even when A is real.l When k = 1, the vector is called simply an eigenvector, and the pair ...

  6. Generalized eigenvector - Wikipedia

    en.wikipedia.org/wiki/Generalized_eigenvector

    In linear algebra, a generalized eigenvector of an matrix is a vector which satisfies certain criteria which are more relaxed than those for an (ordinary) eigenvector. [1]Let be an -dimensional vector space and let be the matrix representation of a linear map from to with respect to some ordered basis.

  7. Weight (representation theory) - Wikipedia

    en.wikipedia.org/wiki/Weight_(representation_theory)

    The motivation for this condition is that the coroot can be identified with the H element in a standard ,, basis for an (,)-subalgebra of . [1] By elementary results for s l ( 2 , C ) {\displaystyle sl(2,\mathbb {C} )} , the eigenvalues of H α {\displaystyle H_{\alpha }} in any finite-dimensional representation must be an integer.

  8. Spectral theorem - Wikipedia

    en.wikipedia.org/wiki/Spectral_theorem

    Thus, the 's should be thought of as "generalized eigenspace"—that is, the elements of are "eigenvectors" that do not actually belong to the Hilbert space. Although both the multiplication-operator and direct integral formulations of the spectral theorem express a self-adjoint operator as unitarily equivalent to a multiplication operator, the ...

  9. Spectrum of a matrix - Wikipedia

    en.wikipedia.org/wiki/Spectrum_of_a_matrix

    Thus the elements of the spectrum are precisely the eigenvalues of T, and the multiplicity of an eigenvalue λ in the spectrum equals the dimension of the generalized eigenspace of T for λ (also called the algebraic multiplicity of λ). Now, fix a basis B of V over K and suppose M ∈ Mat K (V) is a matrix.