Search results
Results from the WOW.Com Content Network
A reaction with ∆H°<0 is called exothermic reaction while one with ∆H°>0 is endothermic. Figure 8: Reaction Coordinate Diagrams showing favorable or unfavorable and slow or fast reactions [7] The relative stability of reactant and product does not define the feasibility of any reaction all by itself.
The reaction is usually endothermic as heat is required to break chemical bonds in the compound undergoing decomposition. If decomposition is sufficiently exothermic, a positive feedback loop is created producing thermal runaway and possibly an explosion or other chemical reaction. Thermal decomposition is a chemical reaction where heat is a ...
Van 't Hoff plot for an endothermic reaction. For an endothermic reaction, heat is absorbed, making the net enthalpy change positive. Thus, according to the definition of the slope: =, When the reaction is endothermic, Δ r H > 0 (and the gas constant R > 0), so
Thus, an endothermic reaction generally leads to an increase in the temperature of the system and a decrease in that of the surroundings. [1] The term was coined by 19th-century French chemist Marcellin Berthelot. [3] The term endothermic comes from the Greek ἔνδον (endon) meaning 'within' and θερμ- (therm) meaning 'hot' or 'warm'. [4]
Thermochemistry is useful in predicting reactant and product quantities throughout the course of a given reaction. In combination with entropy determinations, it is also used to predict whether a reaction is spontaneous or non-spontaneous, favorable or unfavorable. Endothermic reactions absorb heat, while exothermic reactions release heat ...
It is possible to envision three-dimensional (3D) graphs showing three thermodynamic quantities. [12] [13] For example, for a single component, a 3D Cartesian coordinate type graph can show temperature (T) on one axis, pressure (p) on a second axis, and specific volume (v) on a third. Such a 3D graph is sometimes called a p–v–T diagram. The ...
The reaction of silver nitrate with chloride is strongly exothermic. For instance, the reaction enthalpy of Ag + with Cl − is a high −61.2 kJ/mol. This permits convenient determination of chloride with commonly available standard 0.1 mol/L AgNO 3. Endpoints are very sharp, and with care, chloride concentrations down to 15 mg/L can be analyzed.
The energy change can be regarded as being made up of three parts: the endothermic breaking of bonds within the solute and within the solvent, and the formation of attractions between the solute and the solvent.