Search results
Results from the WOW.Com Content Network
A radial hyperbolic trajectory is a non-periodic trajectory on a straight line where the relative speed of the two objects always exceeds the escape velocity. There are two cases: the bodies move away from each other or towards each other. This is a hyperbolic orbit with semi-minor axis = 0 and eccentricity = 1.
McNaught has a hyperbolic orbit but within the influence of the planets, [8] is still bound to the Sun with an orbital period of about 10 5 years. [9] Comet C/1980 E1 has the largest eccentricity of any known hyperbolic comet of solar origin with an eccentricity of 1.057, [10] and will eventually leave the Solar System.
The spacecraft would approach Mars on a hyperbolic orbit, and a final retrograde burn would slow the spacecraft enough to be captured by Mars. Friedrich Zander was one of the first to apply the patched-conics approach for astrodynamics purposes, when proposing the use of intermediary bodies' gravity for interplanetary travels, in what is known ...
An apse line, or line of apsides, is an imaginary line defined by an orbit's eccentricity vector. It is strictly defined for elliptic, parabolic, and hyperbolic orbits. For such orbits the apse line is found: [1] for elliptical orbits – between the orbit's periapsis and apoapsis (also known as the major axis)
Note that non-elliptic trajectories also exist, but are not closed, and are thus not orbits. If the eccentricity is greater than one, the trajectory is a hyperbola. If the eccentricity is equal to one, the trajectory is a parabola. Regardless of eccentricity, the orbit degenerates to a radial trajectory if the angular momentum equals zero.
In celestial mechanics, true anomaly is an angular parameter that defines the position of a body moving along a Keplerian orbit.It is the angle between the direction of periapsis and the current position of the body, as seen from the main focus of the ellipse (the point around which the object orbits).
The International Space Station has an orbital period of 91.74 minutes (5504 s), hence by Kepler's Third Law the semi-major axis of its orbit is 6,738 km. [citation needed] The specific orbital energy associated with this orbit is −29.6 MJ/kg: the potential energy is −59.2 MJ/kg, and the kinetic energy 29.6 MJ/kg.
Here is the angle between the asymptotes of the hyperbolic orbit of the small object relative to the large one, and is the eccentricity of this orbit (which must be greater than 1 for a hyperbolic orbit).