Search results
Results from the WOW.Com Content Network
The ionization equilibrium of an acid or a base is affected by a solvent change. The effect of the solvent is not only because of its acidity or basicity but also because of its dielectric constant and its ability to preferentially solvate and thus stabilize certain species in acid-base equilibria. A change in the solvating ability or ...
In chemistry, an acid–base reaction is a chemical reaction that occurs between an acid and a base.It can be used to determine pH via titration.Several theoretical frameworks provide alternative conceptions of the reaction mechanisms and their application in solving related problems; these are called the acid–base theories, for example, Brønsted–Lowry acid–base theory.
Carbonic acid equilibria are important for acid–base homeostasis in the human body. An amino acid is also amphoteric with the added complication that the neutral molecule is subject to an internal acid–base equilibrium in which the basic amino group attracts and binds the proton from the acidic carboxyl group, forming a zwitterion.
When some strong acid is added to an equilibrium mixture of the weak acid and its conjugate base, hydrogen ions (H +) are added, and the equilibrium is shifted to the left, in accordance with Le Chatelier's principle. Because of this, the hydrogen ion concentration increases by less than the amount expected for the quantity of strong acid added.
This is best illustrated by an equilibrium equation. acid + base ⇌ conjugate base + conjugate acid. With an acid, HA, the equation can be written symbolically as: + + + The equilibrium sign, ⇌, is used because the reaction can occur in both forward and backward directions (is reversible).
If the interaction between acid and base in solution results in an equilibrium mixture the strength of the interaction can be quantified in terms of an equilibrium constant. An alternative quantitative measure is the heat ( enthalpy ) of formation of the Lewis acid-base adduct in a non-coordinating solvent.
In chemistry and biochemistry, the Henderson–Hasselbalch equation = + ([] []) relates the pH of a chemical solution of a weak acid to the numerical value of the acid dissociation constant, K a, of acid and the ratio of the concentrations, [] [] of the acid and its conjugate base in an equilibrium.
However, reaction parameters like temperature, solvent, and ionic strength may all influence the value of the equilibrium constant. A knowledge of equilibrium constants is essential for the understanding of many chemical systems, as well as the biochemical processes such as oxygen transport by hemoglobin in blood and acid–base homeostasis in ...