Search results
Results from the WOW.Com Content Network
The growth rate of a group is a well-defined notion from asymptotic analysis. To say that a finitely generated group has polynomial growth means the number of elements of length at most n (relative to a symmetric generating set) is bounded above by a polynomial function p(n). The order of growth is then the least degree of any such polynomial ...
The free abelian group has a polynomial growth rate of order d. The discrete Heisenberg group H 3 {\displaystyle H_{3}} has a polynomial growth rate of order 4. This fact is a special case of the general theorem of Hyman Bass and Yves Guivarch that is discussed in the article on Gromov's theorem .
See Gromov's theorem on groups of polynomial growth. (Also see D. Edwards for an earlier work.) (Also see D. Edwards for an earlier work.) The key ingredient in the proof was the observation that for the Cayley graph of a group with polynomial growth a sequence of rescalings converges in the pointed Gromov–Hausdorff sense.
The group G is a 2-group, that is, every element in G has finite order that is a power of 2. [1] The group G is periodic (as a 2-group) and not locally finite (as it is finitely generated). As such, it is a counterexample to the Burnside problem. The group G has intermediate growth. [2] The group G is amenable but not elementary amenable. [2]
Geometric group theory grew out of combinatorial group theory that largely studied properties of discrete groups via analyzing group presentations, which describe groups as quotients of free groups; this field was first systematically studied by Walther von Dyck, student of Felix Klein, in the early 1880s, [2] while an early form is found in the 1856 icosian calculus of William Rowan Hamilton ...
This glossary of biology terms is a list of definitions of fundamental terms and concepts used in biology, the study of life and of living organisms.It is intended as introductory material for novices; for more specific and technical definitions from sub-disciplines and related fields, see Glossary of cell biology, Glossary of genetics, Glossary of evolutionary biology, Glossary of ecology ...
Subgroup growth studies these functions, their interplay, and the characterization of group theoretical properties in terms of these functions. The theory was motivated by the desire to enumerate finite groups of given order, and the analogy with Mikhail Gromov 's notion of word growth .
Another definition of the Galois group comes from the Galois group of a polynomial []. If there is a field K / F {\displaystyle K/F} such that f {\displaystyle f} factors as a product of linear polynomials