enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Isotopes of sulfur - Wikipedia

    en.wikipedia.org/wiki/Isotopes_of_sulfur

    Sulfur (16 S) has 23 known isotopes with mass numbers ranging from 27 to 49, four of which are stable: 32 S (95.02%), 33 S (0.75%), 34 S (4.21%), and 36 S (0.02%). The preponderance of sulfur-32 is explained by its production from carbon-12 plus successive fusion capture of five helium-4 nuclei, in the so-called alpha process of exploding type II supernovas (see silicon burning).

  3. δ34S - Wikipedia

    en.wikipedia.org/wiki/Δ34S

    Of the 25 known isotopes of sulfur, four are stable. [1] In order of their abundance, those isotopes are 32 S (94.93%), 34 S (4.29%), 33 S (0.76%), and 36 S (0.02%). [2] The δ 34 S value refers to a measure of the ratio of the two most common stable sulfur isotopes, 34 S: 32 S, as measured in a sample against that same ratio as measured in a known reference standard.

  4. Sulfur isotope biogeochemistry - Wikipedia

    en.wikipedia.org/wiki/Sulfur_isotope_biogeochemistry

    In the atomic symbol of 32 S, the number 32 refers to the mass of each sulfur atom in daltons, the result of the 16 protons and 16 neutrons of 1 dalton each that make up the sulfur nucleus. The three rare stable isotopes of sulfur are 34 S (4.2% of natural sulfur), 33 S (0.75%), and 36 S (0.015%). [4]

  5. Commission on Isotopic Abundances and Atomic Weights

    en.wikipedia.org/wiki/Commission_on_Isotopic...

    With the discovery of oxygen isotopes in 1929, a situation arose where chemists based their calculations on the average atomic mass (atomic weight) of oxygen whereas physicists used the mass of the predominant isotope of oxygen, oxygen-16. This discrepancy became undesired and a unification between the chemistry and physics was necessary. [13]

  6. Isotope geochemistry - Wikipedia

    en.wikipedia.org/wiki/Isotope_geochemistry

    Isotope geochemistry is an aspect of geology based upon the study of natural variations in the relative abundances of isotopes of various elements.Variations in isotopic abundance are measured by isotope-ratio mass spectrometry, and can reveal information about the ages and origins of rock, air or water bodies, or processes of mixing between them.

  7. Natural abundance - Wikipedia

    en.wikipedia.org/wiki/Natural_abundance

    In physics, natural abundance (NA) refers to the abundance of isotopes of a chemical element as naturally found on a planet. The relative atomic mass (a weighted average, weighted by mole-fraction abundance figures) of these isotopes is the atomic weight listed for the element in the periodic table. The abundance of an isotope varies from ...

  8. Template:Infobox sulfur isotopes - Wikipedia

    en.wikipedia.org/wiki/Template:Infobox_sulfur...

    It contains a table of main isotopes and eventually the standard atomic weight. This template is reused in {{Infobox <element>}} as a child Infobox (|child=yes). As of Jan 2023, a 'Main isotope' is conforming MOS:MAINISOTOPE (under construction, see WP:ELEMENTS What is a "Main_isotope"?) Each isotope has its own row, with decay modes:

  9. Standard atomic weight - Wikipedia

    en.wikipedia.org/wiki/Standard_atomic_weight

    The standard atomic weight of a chemical element (symbol A r °(E) for element "E") is the weighted arithmetic mean of the relative isotopic masses of all isotopes of that element weighted by each isotope's abundance on Earth. For example, isotope 63 Cu (A r = 62.929) constitutes 69% of the copper on Earth, the rest being 65 Cu (A r = 64.927), so