Search results
Results from the WOW.Com Content Network
In vector calculus, the divergence theorem, also known as Gauss's theorem or Ostrogradsky's theorem, [1] is a theorem relating the flux of a vector field through a closed surface to the divergence of the field in the volume enclosed.
In physics (specifically electromagnetism), Gauss's law, also known as Gauss's flux theorem (or sometimes Gauss's theorem), is one of Maxwell's equations. It is an application of the divergence theorem , and it relates the distribution of electric charge to the resulting electric field .
As a component of the 4D Gauss' Theorem / Stokes' Theorem / Divergence Theorem [ edit ] In vector calculus , the divergence theorem , also known as Gauss's theorem or Ostrogradsky's theorem, is a result that relates the flow (that is, flux ) of a vector field through a surface to the behavior of the vector field inside the surface.
Gauss's law for magnetism thus states that the net magnetic flux through a closed surface equals zero. The integral and differential forms of Gauss's law for magnetism are mathematically equivalent, due to the divergence theorem. That said, one or the other might be more convenient to use in a particular computation.
This identity is derived from the divergence theorem applied to the vector field F = ψ ∇φ while using an extension of the product rule that ∇ ⋅ (ψ X) = ∇ψ ⋅X + ψ ∇⋅X: Let φ and ψ be scalar functions defined on some region U ⊂ R d, and suppose that φ is twice continuously differentiable, and ψ is once continuously differentiable.
By the divergence theorem, Gauss's law for the field P can be stated in differential form as: =, where ∇ · P is the divergence of the field P through a given surface containing the bound charge density .
The theorem of de Rham shows that this map is actually an isomorphism, a far-reaching generalization of the Poincaré lemma. As suggested by the generalized Stokes' theorem, the exterior derivative is the "dual" of the boundary map on singular simplices.
Galvin's theorem (combinatorics) Gauss theorem (vector calculus) Gamas's Theorem (multilinear algebra) Gauss's Theorema Egregium (differential geometry) Gauss–Bonnet theorem (differential geometry) Gauss–Lucas theorem (complex analysis) Gauss–Markov theorem ; Gauss–Wantzel theorem ; Gelfand–Mazur theorem (Banach algebra)