Search results
Results from the WOW.Com Content Network
In computer science, an algorithm for matching wildcards (also known as globbing) is useful in comparing text strings that may contain wildcard syntax. [1] Common uses of these algorithms include command-line interfaces, e.g. the Bourne shell [2] or Microsoft Windows command-line [3] or text editor or file manager, as well as the interfaces for some search engines [4] and databases. [5]
In SQL, wildcard characters can be used in LIKE expressions; the percent sign % matches zero or more characters, and underscore _ a single character. Transact-SQL also supports square brackets ([and ]) to list sets and ranges of characters to match, a leading caret ^ negates the set and matches only a character not within the list.
The term also refers to a general technique influenced by Zloof's work whereby only items with search values are used to "filter" the results. It provides a way for a software user to perform queries without having to know a query language (such as SQL). The software can automatically generate the queries for the user (usually behind the scenes).
A screenshot of the original 1971 Unix reference page for glob – the owner is dmr, short for Dennis Ritchie.. glob() (/ ɡ l ɒ b /) is a libc function for globbing, which is the archetypal use of pattern matching against the names in a filesystem directory such that a name pattern is expanded into a list of names matching that pattern.
The wildcard pattern (often written as _) is also simple: like a variable name, it matches any value, but does not bind the value to any name. Algorithms for matching wildcards in simple string-matching situations have been developed in a number of recursive and non-recursive varieties.
In computer science, the Krauss wildcard-matching algorithm is a pattern matching algorithm. Based on the wildcard syntax in common use, e.g. in the Microsoft Windows command-line interface, the algorithm provides a non-recursive mechanism for matching patterns in software applications, based on syntax simpler than that typically offered by regular expressions.
find wildcard expressions and regular expressions. A search matches what you see rendered on the screen and in a print preview. The raw "source" wikitext is searchable by employing the insource parameter. For these two kinds of searches a word is any string of consecutive letters and numbers matching a whole word or phrase.
A simple and inefficient way to see where one string occurs inside another is to check at each index, one by one. First, we see if there is a copy of the needle starting at the first character of the haystack; if not, we look to see if there's a copy of the needle starting at the second character of the haystack, and so forth.