Ad
related to: helium neon laser therapy system
Search results
Results from the WOW.Com Content Network
Helium–neon laser at the University of Chemnitz, Germany. A helium–neon laser or He–Ne laser is a type of gas laser whose high energetic gain medium consists of a mixture of helium and neon (ratio between 5:1 and 20:1) at a total pressure of approximately 1 Torr (133 Pa) inside a small electrical discharge.
Laser types with distinct laser lines are shown above the wavelength bar, while below are shown lasers that can emit in a wavelength range. The height of the lines and bars gives an indication of the maximal power/pulse energy commercially available, while the color codifies the type of laser material (see the figure description for details).
The first gas laser, the Helium–neon laser (HeNe), was co-invented by Iranian engineer and scientist Ali Javan and American physicist William R. Bennett, Jr., in 1960. It produced a coherent light beam in the infrared region of the spectrum at 1.15 micrometres. [1] A helium-neon laser is a well-known type of gas laser
Intravenous or intravascular laser blood irradiation (ILBI) involves the in-vivo illumination of the blood by feeding low level laser light generated by a 1–3 mW helium–neon laser at a wavelength of 632.8 nanometers (nm) into a vascular channel, usually a vein in the forearm, under the assumption that any therapeutic effect will be ...
Infrared & Red Light Therapy. As LifePro's cold laser therapy device proves, big things come in small packages and budgets.This gadget can easily hit in your desk drawer, but it certainly packs a ...
A helium–neon laser demonstration. The glow running through the center of the tube is an electric discharge. This glowing plasma is the gain medium for the laser. The laser produces a tiny, intense spot on the screen to the right. The center of the spot appears white because the image is overexposed there. Spectrum of a helium–neon laser.
A helium–neon (HeNe) laser uses an electrical discharge in the helium-neon gas mixture, a Nd:YAG laser uses either light focused from a xenon flash lamp or diode lasers, and excimer lasers use a chemical reaction.
Hungarian physician and surgeon Endre Mester (1903–1984) is credited with the discovery of the biological effects of low power lasers, [36] which occurred a few years after the 1960 invention of the ruby laser and the 1961 invention of the helium–neon (HeNe) laser. [11]
Ad
related to: helium neon laser therapy system