enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Primality test - Wikipedia

    en.wikipedia.org/wiki/Primality_test

    A primality test is an algorithm for determining whether an input number is prime.Among other fields of mathematics, it is used for cryptography.Unlike integer factorization, primality tests do not generally give prime factors, only stating whether the input number is prime or not.

  3. List of undecidable problems - Wikipedia

    en.wikipedia.org/wiki/List_of_undecidable_problems

    In computability theory, an undecidable problem is a decision problem for which an effective method (algorithm) to derive the correct answer does not exist. More formally, an undecidable problem is a problem whose language is not a recursive set ; see the article Decidable language .

  4. Fermat primality test - Wikipedia

    en.wikipedia.org/wiki/Fermat_primality_test

    Fermat's little theorem states that if p is prime and a is not divisible by p, then a p − 1 ≡ 1 ( mod p ) . {\displaystyle a^{p-1}\equiv 1{\pmod {p}}.} If one wants to test whether p is prime, then we can pick random integers a not divisible by p and see whether the congruence holds.

  5. Undecidable problem - Wikipedia

    en.wikipedia.org/wiki/Undecidable_problem

    Those inputs can be numbers (for example, the decision problem "is the input a prime number?") or values of some other kind, such as strings of a formal language. The formal representation of a decision problem is a subset of the natural numbers. For decision problems on natural numbers, the set consists of those numbers that the decision ...

  6. Trial division - Wikipedia

    en.wikipedia.org/wiki/Trial_division

    An example of the trial division algorithm, using successive integers as trial factors, is as follows (in Python): def trial_division ( n : int ) -> list [ int ]: """Return a list of the prime factors for a natural number.""" a = [] # Prepare an empty list. f = 2 # The first possible factor.

  7. Decision problem - Wikipedia

    en.wikipedia.org/wiki/Decision_problem

    An example of a decision problem is deciding with the help of an algorithm whether a given natural number is prime. Another example is the problem, "given two numbers x and y, does x evenly divide y?" A method for solving a decision problem, given in the form of an algorithm, is called a decision procedure for that problem.

  8. Baillie–PSW primality test - Wikipedia

    en.wikipedia.org/wiki/Baillie–PSW_primality_test

    In Python, the NZMATH [23] library has the strong pseudoprime and Lucas tests, but does not have a combined function. The SymPy [24] library does implement this. As of 6.2.0, GNU Multiple Precision Arithmetic Library's mpz_probab_prime_p function uses a strong Lucas test and a Miller–Rabin test; previous versions did not make use of Baillie ...

  9. Lucas primality test - Wikipedia

    en.wikipedia.org/wiki/Lucas_primality_test

    For example, take n = 71. Then n − 1 = 70 and the prime factors of 70 are 2, 5 and 7.We randomly select an a=17 < n.Now we compute: (). For all integers a it is known that