Search results
Results from the WOW.Com Content Network
Nanomaterials electronics [ edit ] Besides being small and allowing more transistors to be packed into a single chip, the uniform and symmetrical structure of nanowires and/or nanotubes allows a higher electron mobility (faster electron movement in the material), a higher dielectric constant (faster frequency), and a symmetrical electron / hole ...
Using nanotech, in the mid-term modern textiles will become "smart", through embedded "wearable electronics", such novel products have also a promising potential especially in the field of cosmetics, and has numerous potential applications in heavy industry. Nanotechnology is predicted to be a main driver of technology and business in this ...
Due to the complexity of the equipment, nanomaterials have high cost compared to conventional materials, meaning they are not likely to feature high-volume building materials. [11] In special cases, nanotechnology can help reduce costs for complicated problems. But in most cases, the traditional method for construction remains more cost ...
Inorganic nanomaterials, (e.g. quantum dots, [29] nanowires, and nanorods) because of their interesting optical and electrical properties, could be used in optoelectronics. [30] Furthermore, the optical and electronic properties of nanomaterials which depend on their size and shape can be tuned via synthetic techniques.
Nanotechnology is the manipulation of matter with at least one dimension sized from 1 to 100 nanometers (nm). At this scale, commonly known as the nanoscale, surface area and quantum mechanical effects become important in describing properties of matter.
Nanomedicine is a large industry, with nanomedicine sales reaching $6.8 billion in 2004. With over 200 companies and 38 products worldwide, a minimum of $3.8 billion in nanotechnology R&D is being invested every year. [10] As the nanomedicine industry continues to grow, it is expected to have a significant impact on the economy.
Nanoelectronics – use of nanotechnology on electronic components, including transistors so small that inter-atomic interactions and quantum mechanical properties need to be studied extensively. Nanomechanics – branch of nanoscience studying fundamental mechanical (elastic, thermal and kinetic) properties of physical systems at the nanometer ...
This presented an important advance in the field as CNT was shown to potentially outperform Si. At the time, a major challenge was ohmic metal contact formation. In this regard, palladium, which is a high-work function metal was shown to exhibit Schottky barrier-free contacts to semiconducting nanotubes with diameters >1.7 nm. [94] [95]