Search results
Results from the WOW.Com Content Network
The ancient Greek understanding of physics was limited to the statics of simple machines (the balance of forces), and did not include dynamics or the concept of work. During the Renaissance the dynamics of the Mechanical Powers, as the simple machines were called, began to be studied from the standpoint of how far they could lift a load, in addition to the force they could apply, leading ...
Symbol Meaning SI unit of measure magnetic vector potential: tesla meter (T⋅m) area: square meter (m 2) amplitude: meter: atomic mass number: unitless acceleration: meter per second squared (m/s 2) magnetic flux density
Thermodynamic work is one of the principal kinds of process by which a thermodynamic system can interact with and transfer energy to its surroundings. This results in externally measurable macroscopic forces on the system's surroundings, which can cause mechanical work, to lift a weight, for example, [1] or cause changes in electromagnetic, [2] [3] [4] or gravitational [5] variables.
the work function in physics; the energy required by a photon to remove an electron from the surface of a metal; magnetic flux or electric flux; the cumulative distribution function of the normal distribution in statistics; phenyl functional group in organic chemistry (pseudoelement symbol)
The table usually lists only one name and symbol that is most commonly used. The final column lists some special properties that some of the quantities have, such as their scaling behavior (i.e. whether the quantity is intensive or extensive ), their transformation properties (i.e. whether the quantity is a scalar , vector , matrix or tensor ...
A branch of physics that studies atoms as isolated systems of electrons and an atomic nucleus. Compare nuclear physics. atomic structure atomic weight (A) The sum total of protons (or electrons) and neutrons within an atom. audio frequency A periodic vibration whose frequency is in the band audible to the average human, the human hearing range.
In 1864, Rudolf Clausius proposed the Greek word ἐργον (ergon) for the unit of energy, work and heat. [2] [3] In 1873, a committee of the British Association for the Advancement of Science, including British physicists James Clerk Maxwell and William Thomson recommended the general adoption of the centimetre, the gramme, and the second as fundamental units (C.G.S. System of Units).
The joule (/ dʒ uː l / JOOL, or / dʒ aʊ l / JOWL; symbol: J) is the unit of energy in the International System of Units (SI). [1] It is equal to the amount of work done when a force of one newton displaces a mass through a distance of one metre in the direction of that force.