enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Eigenvalue algorithm - Wikipedia

    en.wikipedia.org/wiki/Eigenvalue_algorithm

    Given an n × n square matrix A of real or complex numbers, an eigenvalue λ and its associated generalized eigenvector v are a pair obeying the relation [1] =,where v is a nonzero n × 1 column vector, I is the n × n identity matrix, k is a positive integer, and both λ and v are allowed to be complex even when A is real.l When k = 1, the vector is called simply an eigenvector, and the pair ...

  3. Jacobi eigenvalue algorithm - Wikipedia

    en.wikipedia.org/wiki/Jacobi_eigenvalue_algorithm

    Thus one can only calculate the numerical rank by making a decision which of the eigenvalues are close enough to zero. Pseudo-inverse The pseudo inverse of a matrix A {\displaystyle A} is the unique matrix X = A + {\displaystyle X=A^{+}} for which A X {\displaystyle AX} and X A {\displaystyle XA} are symmetric and for which A X A = A , X A X ...

  4. Eigenvalues and eigenvectors - Wikipedia

    en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

    Matrix A acts by stretching the vector x, not changing its direction, so x is an eigenvector of A. Consider n -dimensional vectors that are formed as a list of n scalars, such as the three-dimensional vectors x = [ 1 − 3 4 ] and y = [ − 20 60 − 80 ] . {\displaystyle \mathbf {x} ={\begin{bmatrix}1\\-3\\4\end{bmatrix}}\quad {\mbox{and ...

  5. Eigendecomposition of a matrix - Wikipedia

    en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix

    The decomposition can be derived from the fundamental property of eigenvectors: = = =. The linearly independent eigenvectors q i with nonzero eigenvalues form a basis (not necessarily orthonormal) for all possible products Ax, for x ∈ C n, which is the same as the image (or range) of the corresponding matrix transformation, and also the ...

  6. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    In 3-space n = 3, the axis of a non-null proper rotation is always a unique line, and a rotation around this axis by angle θ has eigenvalues λ = 1, e iθ, e −iθ. In 4-space n = 4 , the four eigenvalues are of the form e ± iθ , e ± iφ .

  7. Sylvester's formula - Wikipedia

    en.wikipedia.org/wiki/Sylvester's_formula

    If a matrix A is both Hermitian and unitary, then it can only have eigenvalues of , and therefore = +, where + is the projector onto the subspace with eigenvalue +1, and is the projector onto the subspace with eigenvalue ; By the completeness of the eigenbasis, + + =.

  8. Conjugate transpose - Wikipedia

    en.wikipedia.org/wiki/Conjugate_transpose

    The eigenvalues of are the complex conjugates of the eigenvalues of . A x , y m = x , A H y n {\displaystyle \left\langle \mathbf {A} x,y\right\rangle _{m}=\left\langle x,\mathbf {A} ^{\mathrm {H} }y\right\rangle _{n}} for any m × n {\displaystyle m\times n} matrix A {\displaystyle \mathbf {A} } , any vector in x ∈ C n {\displaystyle x\in ...

  9. Spectrum of a matrix - Wikipedia

    en.wikipedia.org/wiki/Spectrum_of_a_matrix

    The determinant of the matrix equals the product of its eigenvalues. Similarly, the trace of the matrix equals the sum of its eigenvalues. [4] [5] [6] From this point of view, we can define the pseudo-determinant for a singular matrix to be the product of its nonzero eigenvalues (the density of multivariate normal distribution will need this ...