Search results
Results from the WOW.Com Content Network
The feasible regions of linear programming are defined by a set of inequalities. In mathematics, an inequality is a relation which makes a non-equal comparison between two numbers or other mathematical expressions. [1] It is used most often to compare two numbers on the number line by their size.
A linear inequality contains one of the symbols of inequality: [1] < less than > greater than; ≤ less than or equal to; ≥ greater than or equal to; ≠ not equal to; A linear inequality looks exactly like a linear equation, with the inequality sign replacing the equality sign.
Bennett's inequality, an upper bound on the probability that the sum of independent random variables deviates from its expected value by more than any specified amount Bhatia–Davis inequality , an upper bound on the variance of any bounded probability distribution
In mathematics, an inequation is a statement that an inequality holds between two values. [1] [2] It is usually written in the form of a pair of expressions denoting the values in question, with a relational sign between them indicating the specific inequality relation. Some examples of inequations are: <
There are three inequalities between means to prove. There are various methods to prove the inequalities, including mathematical induction, the Cauchy–Schwarz inequality, Lagrange multipliers, and Jensen's inequality. For several proofs that GM ≤ AM, see Inequality of arithmetic and geometric means.
Another type of equation is inequality. Inequalities are used to show that one side of the equation is greater, or less, than the other. The symbols used for this are: > where > represents 'greater than', and < where < represents 'less than'. Just like standard equality equations, numbers can be added, subtracted, multiplied or divided.
In mathematics, the following inequality is known as Titu's lemma, Bergström's inequality, Engel's form or Sedrakyan's inequality, respectively, referring to the article About the applications of one useful inequality of Nairi Sedrakyan published in 1997, [1] to the book Problem-solving strategies of Arthur Engel published in 1998 and to the book Mathematical Olympiad Treasures of Titu ...
An illustration of Bernoulli's inequality, with the graphs of = (+) and = + shown in red and blue respectively. Here, r = 3. {\displaystyle r=3.} In mathematics , Bernoulli's inequality (named after Jacob Bernoulli ) is an inequality that approximates exponentiations of 1 + x {\displaystyle 1+x} .