enow.com Web Search

  1. Ads

    related to: 3 manifolds in math practice answers sheet

Search results

  1. Results from the WOW.Com Content Network
  2. 3-manifold - Wikipedia

    en.wikipedia.org/wiki/3-manifold

    The prime decomposition theorem for 3-manifolds states that every compact, orientable 3-manifold is the connected sum of a unique (up to homeomorphism) collection of prime 3-manifolds. A manifold is prime if it cannot be presented as a connected sum of more than one manifold, none of which is the sphere of the same dimension.

  3. Introduction to 3-Manifolds - Wikipedia

    en.wikipedia.org/wiki/Introduction_to_3-Manifolds

    Familiar examples of two-dimensional manifolds include the sphere, torus, and Klein bottle; this book concentrates on three-dimensional manifolds, and on two-dimensional surfaces within them. A particular focus is a Heegaard splitting, a two-dimensional surface that partitions a 3-manifold into two handlebodies. It aims to present the main ...

  4. Virtually fibered conjecture - Wikipedia

    en.wikipedia.org/wiki/Virtually_fibered_conjecture

    A 3-manifold which has such a finite cover is said to virtually fiber. If M is a Seifert fiber space, then M virtually fibers if and only if the rational Euler number of the Seifert fibration or the Euler characteristic of the base space is zero. The hypotheses of the conjecture are satisfied by hyperbolic 3-manifolds.

  5. The geometry and topology of three-manifolds - Wikipedia

    en.wikipedia.org/wiki/The_geometry_and_topology...

    The geometry and topology of three-manifolds is a set of widely circulated notes for a graduate course taught at Princeton University by William Thurston from 1978 to 1980 describing his work on 3-manifolds. They were written by Thurston, assisted by students William Floyd and Steven Kerchoff. [1]

  6. Tameness theorem - Wikipedia

    en.wikipedia.org/wiki/Tameness_theorem

    In mathematics, the tameness theorem states that every complete hyperbolic 3-manifold with finitely generated fundamental group is topologically tame, in other words homeomorphic to the interior of a compact 3-manifold. The tameness theorem was conjectured by Marden (1974). It was proved by Agol (2004) and, independently, by Danny Calegari and ...

  7. Prime decomposition of 3-manifolds - Wikipedia

    en.wikipedia.org/wiki/Prime_decomposition_of_3...

    If is a prime 3-manifold then either it is or the non-orientable bundle over , or it is irreducible, which means that any embedded 2-sphere bounds a ball. So the theorem can be restated to say that there is a unique connected sum decomposition into irreducible 3-manifolds and fiber bundles of S 2 {\displaystyle S^{2}} over S 1 . {\displaystyle ...

  8. Hyperbolic 3-manifold - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_3-manifold

    Hyperbolic geometry is the most rich and least understood of the eight geometries in dimension 3 (for example, for all other geometries it is not hard to give an explicit enumeration of the finite-volume manifolds with this geometry, while this is far from being the case for hyperbolic manifolds).

  9. Lickorish–Wallace theorem - Wikipedia

    en.wikipedia.org/wiki/Lickorish–Wallace_theorem

    In mathematics, the Lickorish–Wallace theorem in the theory of 3-manifolds states that any closed, orientable, connected 3-manifold may be obtained by performing Dehn surgery on a framed link in the 3-sphere with ±1 surgery coefficients. Furthermore, each component of the link can be assumed to be unknotted.

  1. Ads

    related to: 3 manifolds in math practice answers sheet