enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Invariants of tensors - Wikipedia

    en.wikipedia.org/wiki/Invariants_of_tensors

    A real tensor in 3D (i.e., one with a 3x3 component matrix) has as many as six independent invariants, three being the invariants of its symmetric part and three characterizing the orientation of the axial vector of the skew-symmetric part relative to the principal directions of the symmetric part.

  3. Cauchy stress tensor - Wikipedia

    en.wikipedia.org/wiki/Cauchy_stress_tensor

    Similarly, every second rank tensor (such as the stress and the strain tensors) has three independent invariant quantities associated with it. One set of such invariants are the principal stresses of the stress tensor, which are just the eigenvalues of the stress tensor. Their direction vectors are the principal directions or eigenvectors.

  4. Tensor - Wikipedia

    en.wikipedia.org/wiki/Tensor

    For example, an element of the tensor product space V ⊗ W is a second-order "tensor" in this more general sense, [29] and an order-d tensor may likewise be defined as an element of a tensor product of d different vector spaces. [30] A type (n, m) tensor, in the sense defined previously, is also a tensor of order n + m in this more general sense.

  5. Invariant (physics) - Wikipedia

    en.wikipedia.org/wiki/Invariant_(physics)

    In theoretical physics, an invariant is an observable of a physical system which remains unchanged under some transformation. Invariance, as a broader term, also applies to the no change of form of physical laws under a transformation, and is closer in scope to the mathematical definition .

  6. Symmetric tensor - Wikipedia

    en.wikipedia.org/wiki/Symmetric_tensor

    This minimal decomposition is called a Waring decomposition; it is a symmetric form of the tensor rank decomposition. For second-order tensors this corresponds to the rank of the matrix representing the tensor in any basis, and it is well known that the maximum rank is equal to the dimension of the underlying vector space.

  7. Q tensor - Wikipedia

    en.wikipedia.org/wiki/Q_tensor

    In physics, tensor is an orientational order parameter that describes uniaxial and biaxial nematic liquid crystals and vanishes in the isotropic liquid phase. [1] The Q {\displaystyle \mathbf {Q} } tensor is a second-order, traceless, symmetric tensor and is defined by [ 2 ] [ 3 ] [ 4 ]

  8. Electromagnetic tensor - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_tensor

    Pseudoscalar invariant: The product of the tensor with its Hodge dual gives a Lorentz invariant: = = where is the rank-4 Levi-Civita symbol. The sign for the above depends on the convention used for the Levi-Civita symbol.

  9. Second fundamental form - Wikipedia

    en.wikipedia.org/wiki/Second_fundamental_form

    The second fundamental form of a parametric surface S in R 3 was introduced and studied by Gauss.First suppose that the surface is the graph of a twice continuously differentiable function, z = f(x,y), and that the plane z = 0 is tangent to the surface at the origin.