enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Grandi's series - Wikipedia

    en.wikipedia.org/wiki/Grandi's_series

    Grandi's series. In mathematics, the infinite series 11 + 11 + ⋯, also written. is sometimes called Grandi's series, after Italian mathematician, philosopher, and priest Guido Grandi, who gave a memorable treatment of the series in 1703. It is a divergent series, meaning that the sequence of partial sums of the series does not converge.

  3. Collatz conjecture - Wikipedia

    en.wikipedia.org/wiki/Collatz_conjecture

    For any integer n, n ≡ 1 (mod 2) if and only if ⁠ 3n + 1 / 2 ⁠ ≡ 2 (mod 3). Equivalently, ⁠ 2n − 1 / 3 ⁠ ≡ 1 (mod 2) if and only if n ≡ 2 (mod 3). Conjecturally, this inverse relation forms a tree except for a 1–2 loop (the inverse of the 1–2 loop of the function f(n) revised as indicated above).

  4. Perfect number - Wikipedia

    en.wikipedia.org/wiki/Perfect_number

    For instance, 6 has proper divisors 1, 2 and 3, and 1 + 2 + 3 = 6, so 6 is a perfect number. The next perfect number is 28, since 1 + 2 + 4 + 7 + 14 = 28. The first four perfect numbers are 6, 28, 496 and 8128. [1] The sum of proper divisors of a number is called its aliquot sum, so a perfect number is one that is equal to its aliquot sum.

  5. Missing dollar riddle - Wikipedia

    en.wikipedia.org/wiki/Missing_dollar_riddle

    The actual solution to this riddle is to add correctly (correct time, correct person and correct location) from the bank point of view which in this case seems to be the problem: First day: $30 in the bank + $20 owner already withdrew = $50. Second day: $15 in the bank + ($15 + $20 owner already withdrew) = $50.

  6. Basel problem - Wikipedia

    en.wikipedia.org/wiki/Basel_problem

    The Basel problem is a problem in mathematical analysis with relevance to number theory, concerning an infinite sum of inverse squares. It was first posed by Pietro Mengoli in 1650 and solved by Leonhard Euler in 1734, [ 1] and read on 5 December 1735 in The Saint Petersburg Academy of Sciences. [ 2] Since the problem had withstood the attacks ...

  7. 1 + 2 + 3 + 4 + ⋯ - Wikipedia

    en.wikipedia.org/wiki/1_%2B_2_%2B_3_%2B_4_%2B_%E...

    The partial sums of the series 1 + 2 + 3 + 4 + 5 + 6 + ⋯ are 1, 3, 6, 10, 15, etc.The nth partial sum is given by a simple formula: = = (+). This equation was known ...

  8. Rhind Mathematical Papyrus - Wikipedia

    en.wikipedia.org/wiki/Rhind_Mathematical_Papyrus

    Problems 16 compute divisions of a certain number of loaves of bread by 10 men and record the outcome in unit fractions. Problems 7–20 show how to multiply the expressions 1 + 1/2 + 1/4 = 7/4, and 1 + 2/3 + 1/3 = 2 by different fractions. Problems 21–23 are problems in completion, which in modern notation are simply subtraction problems.

  9. Four fours - Wikipedia

    en.wikipedia.org/wiki/Four_fours

    Four fours. Four fours is a mathematical puzzle, the goal of which is to find the simplest mathematical expression for every whole number from 0 to some maximum, using only common mathematical symbols and the digit four. No other digit is allowed. Most versions of the puzzle require that each expression have exactly four fours, but some ...

  1. Related searches 6/3(1+2) answer

    6/3(1+2) answer sheet