enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Electron - Wikipedia

    en.wikipedia.org/wiki/Electron

    Electrons in metals also behave as if they were free. In reality the particles that are commonly termed electrons in metals and other solids are quasi-electrons—quasiparticles, which have the same electrical charge, spin, and magnetic moment as real electrons but might have a different mass. [134]

  3. Spin (physics) - Wikipedia

    en.wikipedia.org/wiki/Spin_(physics)

    Spin is an intrinsic form of angular momentum carried by elementary particles, and thus by composite particles such as hadrons, atomic nuclei, and atoms. [1] [2]: 183–184 Spin is quantized, and accurate models for the interaction with spin require relativistic quantum mechanics or quantum field theory.

  4. Atomic orbital - Wikipedia

    en.wikipedia.org/wiki/Atomic_orbital

    The number of electrons orbiting a nucleus can be only an integer. Electrons jump between orbitals like particles. For example, if one photon strikes the electrons, only one electron changes state as a result. Electrons retain particle-like properties such as: each wave state has the same electric charge as its electron particle.

  5. Pauli exclusion principle - Wikipedia

    en.wikipedia.org/wiki/Pauli_exclusion_principle

    Atoms can have different overall spin, which determines whether they are fermions or bosons: for example, helium-3 has spin 1/2 and is therefore a fermion, whereas helium-4 has spin 0 and is a boson. [ 2 ] : 123–125 The Pauli exclusion principle underpins many properties of everyday matter, from its large-scale stability to the chemical ...

  6. Orbital motion (quantum) - Wikipedia

    en.wikipedia.org/wiki/Orbital_motion_(quantum)

    A particle's spin is generally represented in terms of spin operators. It turns out for particles that make up ordinary matter (protons, neutrons, electrons, quarks, etc.) particles are of spin 1/2. [4] Only two energy levels (eigenvectors of the Hamiltonian) exist for a spin 1/2 state: "up" spin, or +1/2, and "down" spin, or -1/2.

  7. Spin quantum number - Wikipedia

    en.wikipedia.org/wiki/Spin_quantum_number

    A pair of electrons in a spin singlet state has S = 0, and a pair in the triplet state has S = 1, with m S = −1, 0, or +1. Nuclear-spin quantum numbers are conventionally written I for spin, and m I or M I for the z-axis component. The name "spin" comes from a geometrical spinning of the electron about an axis, as proposed by Uhlenbeck and ...

  8. Electron pair - Wikipedia

    en.wikipedia.org/wiki/Electron_pair

    This also limits the number of electrons in the same orbital to two. The pairing of spins is often energetically favorable, and electron pairs therefore play a large role in chemistry. They can form a chemical bond between two atoms, or they can occur as a lone pair of valence electrons. They also fill the core levels of an atom.

  9. Molecular orbital theory - Wikipedia

    en.wikipedia.org/wiki/Molecular_orbital_theory

    Thus, when excited with the requisite amount of energy through high-frequency light or other means, electrons can transition to higher-energy molecular orbitals. For instance, in the simple case of a hydrogen diatomic molecule, promotion of a single electron from a bonding orbital to an antibonding orbital can occur under UV radiation.